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ABSTRACT

Distributed controller design and distributed decision making have been hot topics of in-

vestigation in the last few years. New technologies have led to systems where it is critical

to identify architectures that distribute the controller effort over sub-controllers to respect

the information flow and/or resource constraints. The communication uncertainty between

sub-controllers partly governs the optimality of the architecture of the controller. The related

synthesis methodology for optimal distributed controller has to address internal stability con-

cerns and has to incorporate the effect of communication uncertainty into the performance

metric. In the first part of this thesis, a methodology is developed to address the concerns

of sub-controller communication uncertainty. It is demonstrated that different canonical ar-

chitectures of a centralized design result in appreciably different performance. Methods to

identify architectures of information flow where the optimal performance problem is convex

are developed. In addition, synthesis methods to incorporate robustness measures with respect

to model uncertainty of the communication channel are obtained for the associated distributed

architectures. These methods are further refined for specific structures of information flow

in the system. In the second part of this thesis, issues in distributed decision making in a

large network of nodes are discussed, in particular a distributed averaging consensus protocol

is considered which converges asymptotically. However, each node individually never comes to

know of the occurrence of convergence, and thus it keeps running required computation and

communication throughout its life. This is not desired, as in most of the networks the power

of each node is a very limited resource. This thesis provides a distributed algorithm through

which each node can distributively detect when the convergence has occurred within a given

error margin. This distributed detection takes finite time and happens simultaneously.
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CHAPTER 1. INTRODUCTION

Recent technological demands of high performance in the presence of information flow

constraints and large computational loads have posed new challenges for controller synthesis.

In many of these scenarios, the controllers have to be synthesized in a manner that is amenable

to distributive implementation.

Large computational load might arise in systems consisting of several subsystems connected

with each other via large numbers of sensors and actuators. An example where such a large

load is apparent is the recently proposed, massively parallel cantilever based data storage

device, where thousands of cantilevers operating in parallel have to be controlled (1). Large

computational load may also be imposed by high performance specifications on a small system

where the resulting controller is sufficiently complex. In these situations, the controller cannot

be realized at one location and the large load has to be shared by multiple stations.

Distributed controller design is also motivated by new hardware that is increasingly em-

ploying various components that meet different specifications. For example, recent hardware

for real-time applications is being realized with a mix and match of various computational com-

ponents like FPGA’s and DSP’s. In such cases it is often possible to abstract the hardware

into distinct regions with communication between the regions that is possibly uncertain.

The need to address sub-controller communication uncertainty arises naturally in distrib-

uted systems where a sub-controller associated with a sub-system is to be locally realized at a

station with structured information exchange with other substations. Typically this commu-

nication between stations is corrupted or uncertain. In applications like sensor networks (2)

and power distribution, a need for collocating a sub-controller with a corresponding subsystem

imposes a need for distributing the overall controller effort with a pre-specified information
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flow architecture.

In all examples outlined above, the task of determining how the controller task can be

divided into various sub-controllers such that plant-controller interconnection is stable and the

effect of sub-controller communication uncertainty on the performance is minimized is to be

determined.

In centralized controller framework, a controller is realized at a single station and there

is no need to consider effects of uncertainty affecting various components of the controller.

Such a centralized framework is not possible due to reasons provided previously. In decen-

tralized controller design method, a sub-controller interacts only with its subsystem and is

independent from other subsystems. While, in framework of distributed controller design, lo-

cal sub-controllers are collocated with their subsystems. However in this case, communication

between various sub-stations might be possible.

S1

S2

S3

S1

S2

S3

S1

S2

S3

C1

C2

C3

C1

C2

C3

C

centralized system distributed or localized systemdecentralized system

Figure 1.1 Centralized, decentralized and distributed frameworks

The task of designing distributed controllers lead to structural constraints due to the ab-

sence of specific communication links between various sub-controllers. The design of controllers

that achieve optimal performance when structural constraints are present, even without consid-

ering uncertain communication, is a difficult problem (see for example (3; 4; 5) and references

therein). Recently, identification of specific classes of problems where the structural constraints

can be addressed via a convex optimization methods is reported in (6; 7; 8). In (7) a necessary

and sufficient condition on the controller structure was derived that ensures that the optimiza-
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tion problem remains convex in the Youla parameter Q (9). In these works even though the

optimal controller transfer matrices satisfying structural constraint are obtained, the realiza-

tion that implements the transfer matrix into various sub-controllers remains unaddressed. As

will be shown in this thesis, this aspect is not obvious and seemingly natural ways of distrib-

uted realization may even destabilize the interconnection. The internal stability of distributed

realization is discussed in Chapter 1.

In other related work, (10; 11) distributed spatially invariant systems are studied using a

state space approach and a convex method based on solving constraints in the form of LMIs

is presented to obtain structured controllers. In (12), a heuristic method for structured H2

controllers is presented based on low dimensional LMIs. These efforts do not consider the effect

of uncertainty affecting the communication between different sub-controllers.

Motivated by the concerns outlined above, in Chapter 3 a framework for designing architec-

tures for distributed implementation of controllers, that incorporates sub-controller uncertainty

is obtained. Unlike the case when there is no sub-controller noise, a central issue in this thesis

is the identification of the signals that need to be transmitted between sub-controllers. In

the presence of sub-controller noise it is also important to consider a bound on the strength of

sub-controller communication signal. Such a concern adds another variable to the performance

metric. In related prior work, in (13), distributive implementation of a state-feedback control

law is considered and an iterative algorithm is presented to minimize the effect of sub-controller

noise on performance. Preliminary work by authors related to issues raised are reported in

(14; 15; 16). Two special structures on controllers due to information constraints viz. nested

and banded structures are considered in Chapter 4, and architectures for distributed imple-

mentation of controllers is identified by using results from the previous chapter. In Chapter 5

analysis and synthesis of distributed robust controllers in presence of uncertainty in the chan-

nel model is presented. The significance of these architectures is illustrated with help of two

examples in Chapter 6.

Distributed decision making problems like consensus and self-organization have been a very

well studied topic among scientists from various backgrounds like computer science, control
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engineering, physics and biology (for example (2; 37)). Consensus or agreement in a large

network of agents refers to the event in which each agent has same information. It is assumed

that each node is sharing information with its neighbors. Averaging consensus is a special case

where the each node starts with some initial node-value and as a result of agreement it obtains

a value which is an average of initial node-values of all the nodes in the network. Averaging

consensus protocol refers to the action to be performed on the received information. In this

thesis, the focus is on the linear averaging protocol presented in (33) where each node takes

an average of the information received from neighboring nodes. (33) provides a necessary and

sufficient condition that underlying network is strongly connected and balanced which leads

to an asymptotic convergence in absence of any malicious user. It has been shown in (38)

that the requirement for balanced graph can be dropped by using weighted integrators in the

protocol. A faster linear averaging protocol similar to (33) is proposed in (39). A condition

on functions that can be computed distributively is provided in (23) is to be time invariant.

A good survey of consensus problems is provided in (34; 32). In (30) authors have provided

convergence analysis for the angular interaction among agents using a switched linear model.

This model also assumes that over every finite period of time the particles are jointly connected

for the length of the entire interval. See also (35; 36) for extension of (30). Similar agrement

problem over random graphs is addressed in (29) for graphs having binomial distribution. Most

of these works assume some kind of connectivity in the network. In (24) work has been done

towards maintaining the connectivity of network by controlling the algebraic connectivity (also

known as the second smallest eigenvalue of Laplacian of graph) of the network. In Chapter 7,

the distributed averaging protocol along with maximum and minimum consensus protocol are

reviewed. In (28) authors have addressed agreement problem over geometric random graphs

with noisy communication. They showed the convergence in presence of a modified update rule

where the nearest neighbor value is scaled by a special time varying step size. A malicious or

faulty node is one which is not following the consensus protocol. In presence of such nodes, the

averaging protocol becomes unstable, i.e. it fails to converge. In (22) authors have provided

results on stabilizing consensus protocol in presence of faults by assuming that node-values are
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strictly non-negative. Their method is restrictive and suffers from extensive use of message

passing and buffering. An algorithm based on observing spatial correlation of parameters of

each node is proposed in (25), where a node is declared faulty with a high accuracy if its

behavior is not correlated with its neighbors.

In large sensor networks, each node is having limited power for its computational and

communication need. In all consensus protocols, convergence takes place in asymptotic sense,

and there is no distributed way for each individual node to know if the convergence has reached

within desired error margin. Because, if each node can detect the consensus occurrence, then

they can stop doing computation and communication required by the consensus protocol, and

thus saving on the limited power supply. In Chapter 8, a distributed algorithm is presented

which facilitates each node to detect the occurrence of consensus within desired bounds in finite

time. This algorithm requires implementation of maximum and minimum consensus protocols,

which have finite convergence time bounded by the diameter of the network. Some simulations

results are presented in Chapter 9 to demonstrate working of the algorithm.
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PART I

DISTRIBUTED CONTROLLER SYNTHESIS
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CHAPTER 2. INTERNAL STABILITY OF DISTRIBUTED

ARCHITECTURES

G22

K1

K2

t2

u1

t1

u2

y1

y2

+

+

++

+

+

v2

v1

v3

v4

v5v6

e6

e5

e4

e3

e1

e2

G21

G11 G12
w z

Figure 2.1 The G−K1 −K2 interconnection

G22

K1

K2

t1

u1

K

t2

u2

y1

y2

Figure 2.2 G22 −K1 −K2 interconnection

The general framework for a distributed interconnection, considered in this thesis, is il-

lustrated in Figure 2.1 where G represents the generalized plant, sub-controllers K1 and K2

represent distributed implementation of the stabilizing controller K, with w, z, u and y rep-

resenting, exogenous input, regulated output, control effort and the measured output respec-

tively. G, K1 and K2 are assumed to be discrete time, linear and time invariant systems. The

plant and controller interconnection with distributed implementation of controller K using

sub-controllers K1 and K2 is shown in Figure 2.2 where G22 is part of G that maps u to y.

The standard interconnection of the generalized plant G with centralized stabilizing con-

troller K is shown in Figure 2.3. The interconnection of the plant G22 and K is shown in

Figure 2.4.

The main issue addressed in this thesis is the effect of communication uncertainty between

sub-controllers K1 and K2 and means of incorporating these effects into controller synthesis
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G =

 G11 G12

G21 G22



K

u y

w z

Figure 2.3 The G−K interconnection

G22

K

u =

 u1

u2

 y =

 y1

y2



Figure 2.4 The G22 −K interconnection

G22

K1

K2

t

u1

K

u2

y1

y2

G1

G2

Figure 2.5 2-nest system with signal t transmitted from inner nest sub–
controller K1 to outer nest sub-controller K2

methods.

The controller K might also have to satisfy specific information flow constraints. Two

specific structures considered in this thesis are the nested structure that is characterized by

a block triangular structure of the transfer matrix K and banded structure characterized by

delays between sub-systems. Nested and banded structure appear in many applications (8).

Figure 2.5 shows a nested structure controller K where t is a transmitted signal from K1 to

K2. No signal is transmitted from K2 to K1. The controller K has lower triangular structure
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Figure 2.6 Banded structure system.

given by K =

 K11 0

K21 K22

 .

Another structure considered in this thesis is the banded structure which is characterized by

one step delay in interactions between nearest subsystems as depicted in Figure 2.6. Controllers

with this information constraint are called banded controllers.

The transfer matrix will have banded structure as shown below, where λ denotes delay:

K(λ) =



k11 λk12 · · · λn−1k1n

λk21 k22 · · · λn−2k2n

...
...

. . .
...

λn−1kn1 λn−2kn2 · · · knn


(2.1)

2.1 Internal stability of distributed architectures

Note that in the standard setup the internal stability of Figure 2.3 is equivalent to the

internal stability of Figure 2.4 provided the inherited realization of G22 from a stabilizable and

detectable realization of G is itself stabilizable and detectable (17). The following result from

robust control generalizes this result for the distributive setting of Figure 2.1 and Figure 2.2.

Theorem 2.1.1 Consider the G −K1 −K2 interconnection shown in Figure 2.1 where G = G11 G12

G21 G22

 is the generalized plant. Let, K1 and K2 have stabilizable and detectable state

space realizations such that the induced realization of the controller K is stabilizable and de-

tectable. If the interconnection with distributed implementation using K1 and K2 is well-posed
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and the inherited realization of G22 from G is stabilizable and detectable then the G−K1−K2

interconnection shown in Figure 2.1 is internally stable if and only if G22−K1−K2 intercon-

nection shown in Figure 2.2 is internally stable.

Proof See the Appendix A.2 for proof.

Motivated by the above result the following is assumed throughout the thesis

Assumption 2.1.1 All interconnections are well posed and the inherited realization of G22

from a generalized plant G’s stabilizable and detectable realization is stabilizable and detectable.

Using above result, by ensuring the internal stability of G22 − K1 − K2 interconnection,

the internal stability of the overall distributed interconnection can be guaranteed. Thus, for

rest of the discussion on internal stability the G22 − K1 − K2 interconnection is considered

equivalent to the G−K1 −K2 interconnection.

When a controller is implemented distributively, the sub-controller communication archi-

tecture needs to be chosen such that the resulting interconnection is internally stable. Most

input output approaches (see (8; 7)) obtain the optimal controller that meets the information

flow structure but do not address the issue of how to distributively implement the controller.

For example, consider the case shown in Figure 2.7 where a triangular structure is imposed

Figure 2.7 Nested structured system

on controller, such that location K2 can obtain information from K1 but there is no flow of
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information from K2 to K1. K1 and K2 can be obtained as parts of the overall controller K

which needs to be nested, i.e., of the form K =

 K11 0

K21 K22

. Given a stabilizing K, there is

a non-unique way of determining K1 and K2 as this depends on what signals are transmitted.

For example, one choice is , K1 =

 K11

K21

 and K2 =
[

I K22

]
while a second choice is

K1 =

 K11

I

 and K2 =
[

K21 K22

]
. Both realizations are identical in the absence of

sub-controller to sub-controller communication noise.

Existing work in the input-output setting provide means of obtaining the optimal K even

when structural constraints are involved (see (7) and (8)). However, they do not address, for

example, the task of determining whether to implement the first or the second choice of K1 and

K2 in the case delineated above. Indeed, it can be shown that a K that is stabilizing for the

G−K interconnection (see Figure 2.3) when implemented distributively in a G−K1−K2 (see

Figure 2.1) interconnection can be unstable with K1 and K2 chosen according to the second

choice (see the Appendix A.1 for a complete description).

The new closed-loop maps in the distributed implementation that need to be considered for

internal stability are the maps Φzn from the noise n affecting the communication channel to the

regulated variable z, the map Φtw from the exogenous input w to the signal transmitted on the

communication channel t, and the map Φtn from the noise affecting the communication channel

to the signal transmitted on the channel. In addition to all the standard closed-loop maps that

have to be stable for the G − K interconnection in Figure 2.3 to be stable, these additional

maps have to be stable to guarantee internal stability of the G −K1 −K2 interconnection of

Figure 2.1.

The following theorem addresses the internal stability of a particular distributive imple-

mentation of a controller K that stabilizes the interconnection in Figure 2.3.

Theorem 2.1.2 Consider the G −K interconnection given in Figure 2.3 where K is a cen-

tralized stabilizing transfer matrix. The distributive implementation of K into K1 and K2 as

shown in Figure 2.1 is internally stabilizing if any stabilizable and detectable realization of K1
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and K2 is such that the induced realization of K is stabilizable and detectable.

Proof See the Appendix A.3 for proof.

The following corollary holds in the case of nested G22−K1−K2 system shown in Figure 2.5.

Corollary 2.1.1 Consider a 2-nest G22 − K interconnection where K is a centralized sta-

bilizing controller implemented in distributive manner using sub-controllers K1 and K2 as

shown in Figure 2.5 with t2 = t and no transmission from K2 to K1. Let, K1 and K2

have state space realizations given by Let, K1 and K2 have state space realizations given by

K1 =


AC1 BC1

CC11

CC12

0

 and K2 =

 AC2 BC21 BC22

CC2 0

 such that (AC1, BC1, CC11)

and (AC2, BC21, CC2) are stabilizable and detectable. Then, the induced realization of con-

troller K obtained from K1 and K2 is stabilizable and detectable and G22 −K interconnection

with distributed implementation is internally stable.

Proof See the Appendix A.4 for proof.
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CHAPTER 3. PERFORMANCE CONSIDERING COMMUNICATION

UNCERTAINTY IN DISTRIBUTIVE ARCHITECTURES

Apart from the issue of the possible instability of a particular distributive implementation,

the sub-controller uncertainty will affect different implementations differently. Thus, it is

important to incorporate the effect of sub-controller noise on the performance and to consider

a power constraint on sub-controller communication. These performance objectives supplement

the other performance objectives that are typically imposed on the G−K interconnection of

Figure 2.3.

There is thus a need to search over all possible closed-loop maps that are achievable via

internally stabilizing distributive implementations. The exogenous signals and the regulated

variables have to include the sub-controller noise and the transmitted signal respectively to

address the internal stability and performance issues.

Let T (K1,K2) be the closed-loop map for the generalized system shown in Figure 2.1 with

z and the transmitted signal t as the output and w and sub-controller noise n as the input.

Thus

T (K1,K2) :

 w

n

 7→

 z

t

 =

 Φzw Φzn

Φtw Φtn

 , (3.1)

where Φzw captures the standard performance requirement of system, Φzn captures the effect

of sub-controller communication noise on the performance and Φtw captures the power of

transmitted signal with respect to power of external input signals.
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P1 P2

K1 K2

u1

y1 y2

u2

t1

P = G22

C1
11 C1

12

C1
21 C1

22

n1

+
s1

t2

n2

+

s2 C2
11 C2

12

C2
21 C2

22

+ + + + v4v2v3v1

e1

e3 e4

e2

K
Figure 3.1 The controller with communication noise n1 and n2

3.1 Problem statement for obtaining optimal distributed implementation

The objective is to obtain a stabilizing distributed controller implementation K1, K2 such

that it minimizes a measure of the closed-loop map T (K1,K2). The performance optimization

problem of interest can be written as follows:

µ := inf︷ ︸︸ ︷
K1 −K2- is internally stabilizing

‖T (K1,K2)‖ (3.2)

where ‖.‖ is a suitable norm.

Consider the G22−K1−K2 interconnection shown in Figure 3.1 with communication noise

corrupting the transmitted signals where the overall controller K is implemented distributively

using two sub-controllers K1 and K2. Let, K1 =

 C1
11 C1

12

C1
21 C1

22

 and K2 =

 C2
11 C2

12

C2
21 C2

22

 such
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that:  e1

t1

 =

 C1
11 C1

12

C1
21 C1

22


 y1

s2

 , (3.3)

 e2

t2

 =

 C2
11 C2

12

C2
21 C2

22


 y2

s1

 , (3.4)

where s1 and s2 are received signals at K1 and K2, t1 and t2 are transmitted signals which are

getting corrupted by additive communication noise n1 and n2, respectively i.e. s1 = t1 + n1

and s2 = t2 + n2. Note that the dimensions of these sub-controller signals will determine the

actual number of signals to be communicated between sub-controllers. In other words, sizes of

sub-controller matrices C1
12, C1

21, C1
22, C2

12, C2
21, and C2

22 in conformation with their definition

given by (3.3) and (3.4) will determine the dimensions of these sub-controller signals. This is

not known apriori and is a part of the design requirement.

The overall controller K can be obtained in terms of sub-controllers C1
11, C1

12, C1
21, C1

22, C2
11,

C2
12, C2

21, and C2
22. Let,

K =

 K11 K12

K21 K22

 , with

 e1

e2

 =

 K11 K12

K21 K22


 y1

y2


where:

K11 = C1
11 + C1

12(1− C2
22C

1
22)

−1C2
22C

1
21 (3.5)

K12 = C1
12(1− C2

22C
1
22)

−1C2
21 (3.6)

K21 = C2
12(1− C1

22C
2
22)

−1C1
21 (3.7)

K22 = C2
11 + C2

12(1− C1
22C

2
22)

−1C1
22C

2
21. (3.8)

In Figure 3.1 the closed-loop maps from noise n = (n′1, n
′
2)

T to internal variables u =

(u′1, u
′
2)

T , y = (y′1, y
′
2)

T and t = (t′1, t
′
2)

T are given by:

Φun = (I −KG22)−1Kn (3.9)

Φyn = G22(I −KG22)−1Kn (3.10)

Φtn = KtG22(I −KG22)−1Kn + Ktn, (3.11)
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respectively, where Kn is a map from n to (e′1, e
′
2)

T , Kt is a map from y to t and Ktn is a map

from n to t. These maps are given by:

Kn =

 C1
12(1− C2

22C
1
22)

−1C2
22 C1

12(1− C2
22C

1
22)

−1

C2
12(1− C1

22C
2
22)

−1 C2
12(1− C1

22C
2
22)

−1C1
22

 , (3.12)

Kt =

 (1− C1
22C

2
22)

−1C1
21 (1− C1

22C
2
22)

−1C1
22C

2
21

(1− C2
22C

1
22)

−1C2
22C

1
21 (1− C2

22C
1
22)

−1C2
21

 , (3.13)

Ktn =

 (1− C1
22C

2
22)

−1C1
22C

2
22 (1− C1

22C
2
22)

−1C1
22

(1− C2
22C

1
22)

−1C2
22 (1− C2

22C
1
22)

−1C2
22C

1
22

 . (3.14)

The closed-loop map form external signals v = (v′1, v
′
2, v

′
3, v

′
4)

T to the internal variable t at the

site of noise injection in Figure 3.1 is given by:

Φtv = Kt

[
(I −G22K)−1G22 (I −G22K)−1

]
. (3.15)

See the Appendix A.5, A.6 and A.7 for derivation of (3.5)-(3.15). The closed-loop map

T given by (3.1) consists of two maps due to communication uncertainty other than Φtn viz.

Φzn and Φtw. These additional maps are given by:

Φzn = G12Φun (3.16)

Φtw = Kt(I −G22K)−1G21. (3.17)

In the standard robust control setup of Figure 2.3, all closed-loop maps achievable via sta-

bilizing controllers can be parameterized affinely in terms of the Youla parameter Q, according

to the following lemma.

Lemma 3.1.1 (9) Suppose the plant G22 shown in Figure 2.4 that maps the control input

u = (u′1, u
′
2)

T to the measured output y = (y′1, y
′
2)

T has a double-coprime factorization given by

eight stable parameters Yr, Mr, Xr, Nr, X`, N`, Y`, and M` satisfying the following identity Xl −Yl

−Nl Ml


 Mr Yr

Nr Xr

 = I (3.18)

such that following statements are equivalent:



www.manaraa.com

17

• K is internally stabilizing for the interconnection shown in Figure 2.4

• There exists a stable Q such that

K = (Yr −MrQ)(Xr −NrQ)−1 = (X` −QN`)−1(Y` −QM`)

Under the above parametrization of stabilizing controllers, it can be shown that a closed-loop

maps Φzw is achievable via stabilizing controllers if and only if

Φzw ∈ {H − UQV | Q stable}

where H, U, and V are stable transfer matrices determinable from G.

Thus, from above lemma and by using (3.5)-(3.8), sub-controllers C1
11, C1

12, C1
21, C1

22, C2
11,

C2
12, C2

21, and C2
22 can be parameterized in terms of Q by solving following equation: C1

11 + C1
12(1− C2

22C
1
22)

−1C2
22C

1
21 C1

12(1− C2
22C

1
22)

−1C2
21

C2
12(1− C1

22C
2
22)

−1C1
21 C2

11 + C2
12(1− C1

22C
2
22)

−1C1
22C

2
21


= (Yr −MrQ)(Xr −NrQ)−1

= (X` −QN`)−1(Y` −QM`) (3.19)

With the help of discussion presented above, the main performance optimization problem

for distributed implementation can be summarized in following theorem:

Theorem 3.1.1 The optimal distributed controller implementation in terms of sub-controllers

C1
11, C1

12, C1
21, C1

22, C2
11, C2

12, C2
21, and C2

22 which minimizes a given measure of the perfor-
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mance map T is obtained by solving following optimization problem:

µ := inf︷ ︸︸ ︷
T (Q) =

 Φzw(Q) Φzn(Q)

Φtw(Q) Φtn(Q)

 ,

Φzw(Q) = H − UQV,

Φzn(Q) = G12(I −K(Q)G22)−1Kn(Q),

Φtw(Q) = Kt(Q)(I −G22K(Q))−1G21,

Φtn(Q) = Kt(Q)G22(I −K(Q)G22)−1Kn(Q) + Ktn(Q),

Ck
ij(Q) satisfy (3.19) for k = 1, 2; i = 1, 2; j = 1, 2

Q - stable

Ck
ij - internally stabilizes distributed interconnection

‖T (Q)‖ (3.20)

The optimization variables in Theorem 3.1.1 are sub-controllers Ck
ij satisfying (3.19) and

Youla parameter Q. Since, there is no unique solution to (3.19), sub-controllers Ck
ij can be

parameterized in terms of Q in more than one way. As discussed earlier in this section, the

dimensions of all these sub-controller transfer matrices other than C1
11 and C2

11 are not fixed,

which increase the complexity of solving (3.19) to obtain a parametrization for sub-controllers

in terms of Q. Even after solving (3.19) to obtain Ck
ij(Q), there is no guarantee that the

closed-loop map T (Q) will be stable and affine in Q because the additional maps due to

communication uncertainty viz. Φtw, Φzn and Φtn are in general not stable and affine in Q.

Thus, a pivotal issue is the identification of signals to be transmitted between sub-controllers

such that distributed implementation is internally stable and all closed-loop maps including the

above mentioned maps are affine in Youla parameter Q. Within such distributed architectures

the performance problem becomes a convex problem at the cost of being suboptimal to the

main optimization problem given by Theorem 3.1.1.
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3.2 Performance problem - suboptimal but convex

In this section, design of distributive implementation of controllers which have no structural

constraints is presented such that the performance problem in presence of sub-controller noise

is convex at the expense of being suboptimal.

As mentioned in the following lemma, in order to have T (Q) being affine in Q, it suffices

to show that the maps Φun, Φtv and Φtn are affine in the Youla parameter Q.

Lemma 3.2.1 The closed-loop map T (K1,K2) corresponding to Figure 2.1 interconnection is

affine in the Youla parameter Q if the maps Φun, Φtv and Φtn are affine in Q.

Let, Y r = Yr −MrQ, Y l = Yl − QMl, Xr = Xr − NrQ and X l = Xl − QNl. Note that

Y r, Y l, Xr and X l are stable and affine in Q. Using above notation and parameterization, the

following sufficient condition is formulated to design sub-controllers for the system that can

be implemented distributively as shown in Figure 3.1 such that all closed-loop maps are stable

and affine in Q.

Theorem 3.2.1 Consider plant G22 shown in Figure 3.1 that has double-coprime factoriza-

tion given by Lemma 3.1.1 with K being a stabilizing controller parameterized in terms of Q.

Kn,Kt and Ktn are derived from K as given by (3.12)-(3.14). Let Ta = X lKn, Tb = KtXr,

and Φtn = KtG22(I −KG22)−1Kn + Ktn. Then the closed-loop map T (K) given by (3.1) for

the distributive implementation as shown in Figure 3.1 is stable and affine in Q if Ta, Tb and

Φtn are stable and affine in Q.

Proof From (18), Φzw is stable and affine in Q. By using the fact that (I − G22K)−1 =

XrMl, (I − G22K)−1G22 = XrNl, (I −KG22)−1 = MrXl and G22(I −KG22)−1 = NrXl, the

closed-loop maps given by (3.9)-(3.11) and (3.15) are written as follows:

Φun = MrXlKn (3.21)

Φyn = NrXlKn (3.22)

Φtn = KtNrXlKn + Ktn (3.23)

Φtv = Kt

[
XrNl XrMl

]
. (3.24)
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Since, Ta = X lKn and Tb = KtXr. Above four closed-loop maps can be rewritten in terms of

Ta, Tb and Ktn as follows:

Φun = MrTa (3.25)

Φyn = NrTa (3.26)

Φtn = TbX
−1
r NrTa + Ktn (3.27)

Φtv =
[

TbNl TbMl

]
. (3.28)

Since, Mr, Nr,Ml and Nl are stable and constant matrices, in order to find distributive imple-

mentation for controllers such that all closed-loop maps are stable and affine in Q, one must

be able to find sub-controllers K1 and K2 such that Ta, Tb and Φtn are stable and affine in Q.

This provides a sufficient condition for guaranteing that sub-controllers Ck
ij internally stabi-

lizes the distributed interconnection. Using this a suboptimal problem to the main optimization

problem can be formulated such that it is convex.

Theorem 3.2.2 The distributed controller implementation in terms of sub-controllers C1
11, C1

12,

C1
21, C1

22, C2
11, C2

12, C2
21, and C2

22 which minimizes some measure of the performance map T



www.manaraa.com

21

is obtained by solving following optimization problem:

µ1 := inf︷ ︸︸ ︷
T (Q) =

 Φzw(Q) Φzn(Q)

Φtw(Q) Φtn(Q)

 ,

Φzw(Q) = H − UQV,

Φzn(Q) = G12MrTa(Q),

Φtw(Q) = Tb(Q)MlG21,

Φtn(Q) = Tb(Q)X(Q)
−1

r NrTa(Q) + Ktn(Q),

Ta(Q) = X l(Q)Kn(Q),

Tb(Q) = Kt(Q)Xr(Q),

Ck
ij(Q) satisfy (3.19) for k = 1, 2; i = 1, 2; j = 1, 2

Ta(Q), Tb(Q),Φtn(Q) - stable and affine in Q

Q - stable

‖T (Q)‖ (3.29)

The above optimization problem is convex with µ1 ≥ µ.

With this result, the impetus will be on obtaining Ck
ij(Q) satisfying (3.19) for k = 1, 2; i =

1, 2; j = 1, 2 such that Ta(Q), Tb(Q) and Φtn(Q) are stable and affine in Q. Towards this,

let K0 =

 C1
11 0

0 C2
11

 and by using definitions for Kn and Kt given by (3.12)-(3.13), the

controller K can be written in following two ways as (see Appendix A.6 for details):

K = K0 + Kn

 C1
21 0

0 C2
21

 , and (3.30)

K = K0 +

 0 C1
12

C2
12 0

Kt. (3.31)

Since, n = (n′1, n
′
2)
′, Kn can be written as Kn =

[
Kn1 Kn2

]
, i.e.

Ta = X lKn =
[

X lKn1 X lKn2

]
=:

[
Ta1 Ta2

]
. (3.32)
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Similarly with t = (t′1, t
′
2)
′, Kt can be written as Kt =

 Kt1

Kt2

, i.e.

Tb = KtXr =

 Kt1Xr

Kt2Xr

 =:

 Tb1

Tb2

 . (3.33)

Using (3.32), (3.30) can be further simplified as follows:

K −K0 = Kn

 C1
21 0

0 C2
21

 .

Therefore,

X l(K −K0) = X lKn

 C1
21 0

0 C2
21

 .

This implies that

X l(X
−1
l Y l −K0) = Ta

 C1
21 0

0 C2
21

 ,

therefore,

(Y l −X lK0) =
[

Ta1C
1
21 Ta2C

2
21

]
. (3.34)

Similarly, using (3.33), (3.31) can be further simplified to:

(Yr −K0Xr) =

 C1
12Tb2

C2
12Tb1

 . (3.35)

It is not clear how to solve (3.34) and (3.35) for all possible solutions. However, by fixing K0,

one solution for each (3.34) and (3.35) can be obtained, leading to two stabilizing distributed

implementations with convex performance problem as discussed in the next section.
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3.3 Two stabilizing distributed implementation with convex performance

problem

Coprime factors of G22 are partitioned in conformation with partitioning of K in Figure 3.1

X l =

 X̃11 X̃12

X̃21 X̃22

 ;Y l =

 Ỹ11 Ỹ12

Ỹ21 Ỹ22

 ;Nl =

 Ñ11 Ñ12

Ñ21 Ñ22

 ;Ml =

 M̃11 M̃12

M̃21 M̃22

 ;Xr =

 X11 X12

X21 X22

 ;Y r =

 Y11 Y12

Y21 Y22

 ;Nr =

 N11 N12

N21 N22

 and Mr =

 M11 M12

M21 M22

. Ta

and Tb can be further partitioned in confirmation with X l and Xr, respectively as Ta = T u
a1 T u

a2

T d
a1 T d

a2

 and Tb =

 T l
b1 T r

b1

T l
b2 T r

b2

.

Consider the case when two communication channels for transmission in each direction are

used between sub-controllers i.e. t1 =

 t11

t12

 , t2 =

 t21

t22

 , n1 =

 n11

n12

 and n2 =

 n21

n22

. In this special case, following two corollaries present two stabilizing distributed

implementations with convex performance problem.

Corollary 3.3.1 Left-coprime architecture:

The two sub-controllers K1 and K2 using two communication channel architecture as given by

following equations:

K1 =

 C1
11 C1

12

C1
21 C1

22

 =


X̃−1

11 Ỹ11 X̃−1
11 Ỹ12 −X̃−1

11 X̃12

I

X̃−1
11 Ỹ11

0 0

X̃−1
11 Ỹ12 −X̃−1

11 X̃12

 (3.36)

K2 =

 C2
11 C2

12

C2
21 C2

22

 =


X̃−1

22 Ỹ22 X̃−1
22 Ỹ21 −X̃−1

22 X̃21

I

X̃−1
22 Ỹ22

0 0

X̃−1
22 Ỹ21 −X̃−1

22 X̃21

 (3.37)

satisfies parametrization given by (3.19) and is such that Ta, Tb and Φtn are stable and affine in

Q. This architecture given by (3.36)-(3.37) is called left-coprime architecture. and is shown in
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−X̃21X̃−1
11

Ỹ12

Ỹ21Ỹ11

Ỹ22

X̃−1
22−X̃12

+

+

+

+

+

+

+

+

n11

n12

n21

n22

u1

y1

u2

y2

P2

K2

P1

K1

t11

t12

t21

t22

s11

s12

s21

s22

++ + +
v1 v2 v3 v4

Figure 3.2 Left-coprime architecture
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Figure 3.2. The transmitted signals in this architecture are t = (t′1, t
′
2)
′ = (t′11, t

′
12, t

′
21, t

′
22)

′ =

(y′1, u
′
1, y

′
2, u

′
2)
′.

Proof It can be verified that sub-controllers C1
11, C1

12, C1
21, C1

22, C2
11, C2

12, C2
21, and C2

22

satisfies (3.19). Ta, Tb and Φtn for this architecture are given by:

Ta =

 0 −X̃12 0 Ỹ12

−X̃21 0 Ỹ21 0

ΠT (3.38)

Tb = Π



Y11 Y12

Y21 Y22

X11 X12

X21 X22


(3.39)

Φtn = Π

 Mr

Nr

Ta (3.40)

which are stable and affine in Q. Π is the permutation matrix given by Π =



0 0 I 0

I 0 0 0

0 0 0 I

0 I 0 0


.

The left-coprime architecture obtained in above corollary can be used to reduce the convex

performance optimization problem given in Theorem 3.2.2 to the following suboptimal problem:

γL := inf︷ ︸︸ ︷
Left-coprime architecture

Q - stable

‖T (Q)‖ (3.41)

= inf︷ ︸︸ ︷
Q - stable

∥∥∥∥∥∥∥
 H − U ∗Q ∗ V HL

1 − UL
1 ∗Q ∗ V L

1

HL
2 − UL

2 ∗Q ∗ V L
2 HL

3 − UL
3 ∗Q ∗ V L

3


∥∥∥∥∥∥∥ (3.42)

where HL
1 , UL

1 , V L
1 ,HL

2 , UL
2 , V L

2 ,HL
3 , UL

3 and V L
3 are determined based on left-coprime archi-

tecture.
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Another set of sub-controllers can be obtained using right-coprime factors as discussed in

following corollary.

Corollary 3.3.2 Right-coprime architecture:

The two sub-controllers K1 and K2 using two communication channel architecture as given by

following equations:

K1 =

 C1
11 C1

12

C1
21 C1

22

 =


Y11X

−1
11 I Y11X

−1
11

Y21X
−1
11

−X21X
−1
11

0 Y21X
−1
11

0 −X21X
−1
11

 (3.43)

K2 =

 C2
11 C2

12

C2
21 C2

22

 =


Y22X

−1
22 I Y22X

−1
22

Y12X
−1
22

−X12X
−1
22

0 Y12X
−1
22

0 −X12X
−1
22

 (3.44)

satisfies parametrization given by (3.19) and is such that Ta, Tb and Φtn are stable and affine

in Q. This architecture given by (3.43)-(3.44) is called right-coprime architecture and is shown

in Figure 3.3. The transmitted signal in this architecture is t = (t′1, t
′
2)
′ = (t′11, t

′
12, t

′
21, t

′
22)

′ =

(Y21X
−1
11 y′1,−X21X

−1
11 y′1, Y12X

−1
22 y′2,−X21X

−1
22 y′2)

′.

Proof It can be verified that sub-controllers C1
11, C1

12, C1
21, C1

22, C2
11, C2

12, C2
21, and C2

22

satisfies (3.19). Ta, Tb and Φtn for this architecture are given by:

Ta =

 X̃11 X̃12 Ỹ11 Ỹ12

X̃21 X̃22 Ỹ21 Ỹ22

Π (3.45)

Tb = ΠT



0 Y12

Y21 0

0 −X12

−X21 0


(3.46)

Φtn = Tb

[
Nl Ml

]
Π (3.47)

which are stable and affine in Q.
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Y12Y11

−X21

−X12X−1
11

X−1
22

Y22Y21

+

+

+

+

n22

n21

n12

n11

u1

y1

u2

y2

P2

K2

P1

K1

s11

s12

s21

s22 t22

t21

t12

t11

++ + +
v1 v2 v3 v4

+

+

+

+

Figure 3.3 Right-coprime architecture
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The right-coprime architecture obtained in above corollary can be used to reduce the convex

performance optimization problem given in Theorem 3.2.2 to the following suboptimal problem:

γR := inf︷ ︸︸ ︷
Right-coprime architecture

Q - stable

‖T (Q)‖ (3.48)

= inf︷ ︸︸ ︷
Q - stable

∥∥∥∥∥∥∥
 H − U ∗Q ∗ V HR

1 − UR
1 ∗Q ∗ V R

1

HR
2 − UR

2 ∗Q ∗ V R
2 HR

3 − UR
3 ∗Q ∗ V R

3


∥∥∥∥∥∥∥ (3.49)

where HR
1 , UR

1 , V R
1 ,HR

2 , UR
2 , V R

2 ,HR
3 , UR

3 and V R
3 are determined based on left-coprime archi-

tecture.

Left-coprime and right-coprime architectures provide a subclass of controllers over which a

convex search can be done to obtain controllers which can be implemented distributively, such

that desired performance is met including those related to the affect of sub-controller noise

and the power of sub-controller transmission signal.

This completes the construction of two architectures for distributed implementation of

controller K such that implementation is stable and the performance problem in presence of

sub-controller communication is a convex problem.
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CHAPTER 4. DISTRIBUTED DESIGN FOR CONTROLLERS WITH

SPECIAL STRUCTURE

The two architectures obtained in the previous chapter for controllers without any structure

can be specialized to controllers with banded structure and nested structure.

4.1 Banded Structure

All banded structure controllers K given by Equation (2.1) can be parametrized in terms

of Youla parameter Q which is also banded by making use of the following Lemma. For the

sake of simplicity, n is taken to be equal to 2, and the result can be generalized for any n.

Lemma 4.1.1 Let the plant P = G22 shown in Figure 2.6 that maps the control input u =

(u′1, u
′
2)

T to the measured output y = (y′1, y
′
2)

T be described by (A(λ), B(λ), C(λ), D(λ)) as

discussed in Chapter 2. Assuming that P has stabilizable and detectable realization, i.e. there

exist F̄ and L̄ with the properties given above. Then, there exist stable banded parameters

Yr, Mr, Xr, Nr, X`, N`, Y`, and M` satisfying the following identity Xl −Yl

−Nl Ml


 Mr Yr

Nr Xr

 = I

such that following statements are equivalent:

• K has banded structure and is internally stabilizing for the interconnection shown in

Figure 2.6

• There exists a stable Q with band structure such that

K = (Yr −MrQ)(Xr −NrQ)−1 = (X` −QN`)−1(Y` −QM`)
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Proof This is a 2−input 2−output case of generalized result on parameterization of banded

strucutre controller in terms of banded structure Q given in (8)

This results in the parameterization of K in terms of Q having the same banded structure.

Let Q be partitioned in conformation with partitioning of G22 and K:

Q =

 Q11 λQ12

λQ21 Q22

 .

Let, Y r = Yr−MrQ, Y l = Yl−QMl, Xr = Xr−NrQ and X l = Xl−QNl. Note that Y r, Y l, Xr

and X l are affine in Q, stable and have banded structure. Let, X l =

 X̃11 λX̃12

λX̃21 X̃22

 ;Y l =

 Ỹ11 λỸ12

λỸ21 Ỹ22

 ;Nl =

 Ñ11 λÑ12

λÑ21 Ñ22

 ;Ml =

 M̃11 λM̃12

λM̃21 M̃22

 ;Xr =

 X11 λX12

λX21 X22

 ;

Y r =

 Y11 λY12

λY21 Y22

 ;Nr =

 N11 λM12

λN21 N22

 and Mr =

 M11 λM12

λM21 M22

.

Substitute these coprime factors in the architectures obtained in previous Chapter to obtain

two ways of implementing banded structured controller such that the performance problem is

a convex problem in presence of sub-controller noise. Thus, the two sub-controllers with left-

coprime architecture are given by

K1 =

 C1
11 C1

12

C1
21 C1

22

 =


X̃−1

11 Ỹ11 λX̃−1
11 Ỹ12 −λX̃−1

11 X̃12

I

X̃−1
11 Ỹ11

0 0

λX̃−1
11 Ỹ12 −λX̃−1

11 X̃12

 (4.1)

K2 =

 C2
11 C2

12

C2
21 C2

22

 =


X̃−1

22 Ỹ22 λX̃−1
22 Ỹ21 −λX̃−1

22 X̃21

I

X̃−1
22 Ỹ22

0 0

λX̃−1
22 Ỹ21 −λX̃−1

22 X̃21

 (4.2)

and is shown in Figure 4.1.

Another architecture is obtained by substituting coprime factors in right-coprime architec-

ture. Thus, the two sub-controllers of right-coprime architecture for banded structure controller
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+

+

+

+
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+

+

+
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Figure 4.1 Left-coprime architecture for banded structure
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+

+

+
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Figure 4.2 Right-coprime architecture for banded structure
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are given by

K1 =

 C1
11 C1

12

C1
21 C1

22

 =


Y11X

−1
11 I Y11X

−1
11

λY21X
−1
11

−λX21X
−1
11

0 λY21X
−1
11

0 −λX21X
−1
11

 (4.3)

K2 =

 C2
11 C2

12

C2
21 C2

22

 =


Y22X

−1
22 I Y22X

−1
22

λY12X
−1
22

−λX12X
−1
22

0 λY12X
−1
22

0 −λX12X
−1
22

 (4.4)

and is shown in Figure 4.2.

4.2 Nested Structure

All stabilizing nested controllers K as shown in Figure 2.5 can be parameterized using

Youla-Kucera parameter Q. The following result translates the triangular structure restriction

on the controller to the same structure on the Youla parameter Q. Once again for the sake of

simplicity, n is taken to be equal to 2, and the result can be generalized for any n.

Lemma 4.2.1 Consider 2-nest G22−K system shown in Figure 2.5, where G22 =

 G22a 0

G22c G22d


:= P maps control inputs u = (u′1, u

′
2)
′ to the measured output y = (y′1, y

′
2)
′. Assume that P1 =[

G22a 0

]
and P2 =

[
G22c G22d

]
have state space realizations

 A1 B11 0

C1 D11 0

 and

 A2 B21 B22

C2 D21 D22

, respectively, and the inherited realizations of G22a and G22d are stabi-

lizable and detectable. Then there exist stable lower triangular parameters Yr, Mr, Xr, Nr, X`,

N`, Y`, and M` satisfying the following identity Xl −Yl

−Nl Ml


 Mr Yr

Nr Xr

 = I (4.5)

such that the following statements are equivalent:

• K is lower triangular and it internally stabilizes the G22 −K inter-connection.
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• there exists a stable Q that is lower triangular such that

K = (Yr −MrQ)(Xr −NrQ)−1 = (X` −QN`)−1(Y` −QM`)

Proof This is a 2−input 2−output case of generalized result on parameterization of lower

triangular controller in terms of lower triangular Q parameter given in (8)

This results in the parameterization of K in terms of Q having the same structure. Let Q

be partitioned according to the structure of G22 and K:

Q =

 Q11 0

Q21 Q22

 .

Let, Y r = Yr − MrQ, Y l = Yl − QMl, Xr = Xr − NrQ and X l = Xl − QNl. Note that

Y r, Y l, Xr and X l are affine in Q, stable and have lower triangular structure. Let, X l = X̃11 0

X̃21 X̃22

 ;Y l =

 Ỹ11 0

Ỹ21 Ỹ22

 ;Nl =

 Ñ11 0

Ñ21 Ñ22

 ;Ml =

 M̃11 0

M̃21 M̃22

 ;Xr =

 X11 0

X21 X22

 ;Y r =

 Y11 0

Y21 Y22

 ;Nr =

 N11 0

N21 N22

 and Mr =

 M11 0

M21 M22

.

Substitute these coprime factors in the architectures obtained in Chapter 3 to obtain two

ways of implementing triangular structured controller such that the performance problem is

a convex problem in presence of sub-controller noise. Thus, the two sub-controllers with left-

coprime architecture are given by

K1 =

 C1
11 C1

12

C1
21 C1

22

 =


X̃−1

11 Ỹ11 0 0

I

X̃−1
11 Ỹ11

0 0

0 0

 (4.6)

K2 =

 C2
11 C2

12

C2
21 C2

22

 =


X̃−1

22 Ỹ22 X̃−1
22 Ỹ21 −X̃−1

22 X̃21

I

X̃−1
22 Ỹ22

0 0

X̃−1
22 Ỹ21 −X̃−1

22 X̃21

 (4.7)



www.manaraa.com

35

+ +

+

+

X̃−1
11 Ỹ11
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Figure 4.3 Left-coprime architecture for nested structure
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and is equivalent to

K1 =

 C1
11 C1

12

C1
21 C1

22

 =


X̃−1

11 Ỹ11 0 0

I

X̃−1
11 Ỹ11

0 0

0 0

 (4.8)

K2 =

 C2
11 C2

12

C2
21 C2

22

 =


X̃−1

22 Ỹ22 X̃−1
22 Ỹ21 −X̃−1

22 X̃21

0

0

0 0

0 0

 . (4.9)

The architecture is shown in Figure 4.3. The closed-loop transfer functions are all affine in Q

and given by:

Φu2n1 = −M22X̃21, Φu2n2 = M22Ỹ21, Φy2n1 = −N22X̃21,

Φy2n2 = N22Ỹ21, Φt1v1 = Y11Ñ11, Φt2v1 = X11Ñ11,

Φt1v3 = Y11M̃11, Φt2v3 = X11M̃11 .

Another architecture is obtained by substituting coprime factors in right-coprime architec-

ture. Thus, the two sub-controllers of right-coprime architecture for banded structure controller

are given by

K1 =

 C1
11 C1

12

C1
21 C1

22

 =


Y11X

−1
11 I Y11X

−1
11

Y21X
−1
11

−X21X
−1
11

0 Y21X
−1
11

0 −X21X
−1
11

 (4.10)

K2 =

 C2
11 C2

12

C2
21 C2

22

 =


Y22X

−1
22 I Y22X

−1
22

0

0

0 0

0 0

 (4.11)
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+

+

X−1
11Y11

Y21 −X21

Y22 X−1
22

K(Q)

K2

K1

t2
n2

y1

y2

u1

u2
+

+n1

t1

G2

G1

G22

Figure 4.4 Right-coprime architecture for nested structure
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and is equivalent to

K1 =

 C1
11 C1

12

C1
21 C1

22

 =


Y11X

−1
11 0 0

Y21X
−1
11

−X21X
−1
11

0 0

0 0

 (4.12)

K2 =

 C2
11 C2

12

C2
21 C2

22

 =


Y22X

−1
22 I Y22X

−1
22

0

0

0 0

0 0

 . (4.13)

The architecture is shown in Figure 4.4. The closed-loop transfer functions are all affine in Q

and given by:

Φu2n1 = M22X̃22, Φu2n2 = M22Ỹ22, Φy2n1 = −N22X̃22,

Φy2n2 = N22Ỹ22, Φt1v1 = Y21Ñ11, Φt2v1 = −X21Ñ11,

Φt1v3 = Y21M̃11, Φt2v3 = −X21M̃11 .

Further, it can be shown that the result presented in (15) to obtain above two archi-

tectures for nested system can be derived from (3.34)-(3.35). This is done by by setting

C1
11 = X̃−1

11 Ỹ11 and C2
11 = X̃−1

22 Ỹ22 in 3.34 and by setting C1
11 = Y11X

−1
11 and C2

11 = Y22X
−1
22 ,

(3.35). As noted in the above two architectures for nested structure controllers, C1
12 = 0, C1

22 =

0, C2
21 = 0 and C2

22 = 0. This is in confirmation with the definition of C1
12, C

1
22, C

2
21 and C2

22

for nested structure as there is no signal being transmitted from K2 to K1. Using this and

right multiplying (3.34) by Xr and left multiplying (3.35) by X l, following two equations are

obtained:

TaTb =

 0

T a

[
T b 0

]
=

 0 0

(Ỹ21X11 − X̃21Y11) 0


TaTb =

 0

T a

[
T b 0

]
=

 0 0

(X̃22Y21 − Ỹ22X21) 0



⇒ T aT b = Ỹ21X11 − X̃21Y11, and (4.14)

T aT b = X̃22Y21 − Ỹ22X21. (4.15)



www.manaraa.com

39

where T a = X̃22C
2
12 and T b = C1

21X11. Thus, (4.14)-(4.15) are same as the set of equations

used in (15) to derive the architectures shown in Figure 4.3 and 4.4. Note that if (4.14)

(and (4.15)) can be factorized to obtain affine in Q factors T a and T b, that will result in all

possible architectures with C1
11 = Ỹ11X̃

−1
11 and C2

11 = Ỹ22X̃
−1
22 (and architecture with C1

11 =

Y11X
−1
11 and C2

11 = Y22X
−1
22 ) for which the performance problem in presence of sub-controller

communication is a convex problem.

Theorem 4.2.1 Consider 2-nest G22−K system shown in Figure 2.5 having double-coprime

factorization given by Lemma 4.2.1 with nested-structure K being a stabilizing controller pa-

rameterized in terms of nested-structure Q. K is implemented distributively such that C1
11 =

Ỹ11X̃
−1
11 and C2

11 = Ỹ22X̃
−1
22 . Then there exists an architecture for distributive implementation

such that the closed-loop map T (K) is a stable and affine in Q if and only if there exists a

factorization of (Ỹ21X11 − X̃21Y11) such that the two factors are stable and affine in Q.

Corollary 4.2.1 Consider 2-nest G22−K system shown in Figure 2.5 having double-coprime

factorization given by Lemma 4.2.1 with nested-structure K being a stabilizing controller pa-

rameterized in terms of nested-structure Q. K is implemented distributively such that C1
11 =

Y11X
−1
11 and C2

11 = Y22X
−1
22 . Then there exists an architecture for distributive implementation

such that the closed-loop map T (K) is a stable and affine in Q if and only if there exists a

factorization of (Ỹ21X11 − X̃21Y11) such that the two factors are stable and affine in Q.
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CHAPTER 5. ROBUST STABILITY FRAMEWORK

In Chapter 3 and 4, few architectures have been developed for distributed implementation

such that the performance problem taking care of affect sub-controller noise and sub-controller

communication power constraint can be formulated as a convex problem. In this Chapter,

under those architectures the same performance problem for designing distributed controllers

is addressed within the framework of robust controller synthesis and a method is developed to

obtain optimal controller. This can be done by modelling the communication channels affected

by noise as multiplicative channel uncertainty and cast the problem of finding the optimal con-

troller which minimizes the affect of noise on the overall performance of the system as a robust

controller synthesis problem. Similarly, the affect of external signals on the interconnection is

also taken care by modelling the links between plant and controller as multiplicative channel

uncertainty. For the illustration purpose the discussion is restricted to nested structure systems

with uncertainty only in sub-controller communication but this formulation can be generalized

to banded structure as well as plants with no information structure with uncertainty in all

possible external links.

Towards this, consider the descriptions given in Figure 5.1 that shows uncertainty affecting

the link from the sub-controller K1 to K2. Figure 5.1 implements K1 and K2 with two-channel

transmission from K1 to K2 based on one of the architectures obtained in previous Chapters.

The above uncertainty characterizations can be cast into the standard M −∆ framework as

shown in Figure 5.2, where n =
(
n1

n2

)
, s =

(
s1

s2

)
,

∆n =

 ∆n1 0

0 ∆n2


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G22

K1

K2

w

K

y1

y2

G12G11

G21u1

z

u2

n1

n2t1 t2

s1
s2

+

+

∆n1 ∆n2

∆z

Figure 5.1 G−K nested system with noise modelled as multiplicative un-
certainty

and

M(Q) :

 w

n

 7→

 z

s



=


H − U ∗Q ∗ V H ′

a1 − U ′a1 ∗Q ∗ V ′a1 H ′
a2 − U ′a2 ∗Q ∗ V ′a2

H ′
b1 − U ′b1 ∗Q ∗ V ′b1

H ′
b2 − U ′b2 ∗Q ∗ V ′b2

0


where Q is sable lower triangular transfer function, and

Following class for uncertainty description is considered:

∆LTV = {∆ ∈ S is linear time varying and ‖∆‖ < ∞}

where S characterizes the structure and the norm is either `∞ or `2 induced norm.
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∆z

M(Q)
w z

n s

∆n

Figure 5.2 The M-∆ configuration for two channel case shown in Figure 5.1

Note that when S is given by the block diagonal structure diag(∆z,∆n) with ∆z, and

∆n being unstructured then the M −∆ interconnection is robustly stable with respect to all

∆ ∈ B∆LTV := {∆ ∈ ∆LTV |‖∆‖ ≤ 1} if and only if infD∈D ‖DM(Q)D−1‖`1 < 1 where

D = {D = diag(1, d1, d2) with di > 0} (19).

Thus the problem for robust synthesis in this case reduces to the problem

inf
Q∈`1

inf
D∈D

‖DM2(Q)D−1‖`1 .

This problem is nonconvex in the variables D and the Youla parameter Q. Recently in (20)

a global solution to the above synthesis problem was achieved. This provides an effective

procedure to address the problem of synthesizing controllers for `1 robust synthesis when

there is uncertainty in the nest to nest, sub-controller to sub-controller uncertainty when the

uncertainty is described in the `∞ sense.
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CHAPTER 6. EXAMPLES

6.1 Optimal Distributed Controller Design for 2-node ABR Network:

Robust Synthesis Framework

Node 1 Node 2

Source 1

Source 2

C1
C2

q1 q2

r1 r12

r2

w

(vc11,vc12,vc2)

Source 1

Source 2

C1
C2

q1 q2

r1 r12

r2

w

(vc11,vc12,vc2)

Figure 6.1 2-nodal ABR network with congestion control

Consider the nested system shown in Figure 6.1 of 2-node Available Bit Rate (ABR) com-

munication network, with the problem of congestion of data packets at two nodes. This example

illustrates design of an optimal controller with nested structure using robust control synthesis

technique as discussed in Chapter 5. The objective is to not only avoid the congestion while

keeping the channel utilization ratio as large as possible, but also to minimize the affect of

sub-controller to sub-controller noise.

In Figure 6.1, r1 and r2 are the rate with which source 1 and 2 transmit data packets to

node 1 and 2, respectively. r12 is the rate of flow from node 1 to node 2. w represents the



www.manaraa.com

44

total available capacity (bit-rate) for the two sources. q1 and q2 denote the queue lengths at

node 1 and 2, respectively. The network control the network traffic by regulating rates r1, r12

and r2. The overall controller consists of two sub-controllers C1 and C2, controlling r1 and

(r′12, r
′
2)
′, respectively. Note that, the flow of information between controller is only from C2 to

C1, similar to the 2-nest system of Figure 2.7, with K2 = C1 and K1 = C2. The objectives are

to avoid the two queues from overflowing by avoiding congestion, to maximize the utilization

factor of the network, i.e. to make r1 + r2 match w as close as possible, to minimize the affect

of sub-controller to sub-controller noise on the queue lengths and rates of transmission, and to

regulate the signal power transmitted between two sub-controllers.

The controller K is implemented using the left-coprime architecture derived in Chapter 3

such that K internally stabilizes the network in the presence of noise in the communication

channel between C1 and C2 sub-controllers. The information transmitted from C2 to C1 are

(r′12, r
′
2)
′ and q2, and they get corrupted by noise viz. vc11, vc12 and vc2, respectively. The

exogenous signals are identified as the available capacity w, and the noise (v′c11, vc12′, v′c2)
′.

The regulated variables are two queue lengths q1 and q2, and the difference between the data

rate of the source and the fraction of w allocated to that source, i.e. r1−a1 ∗w and r2−a2 ∗w.

Thus, z = [ (r2 − a1 ∗ w)′ (r1 − a2 ∗ w)′ q′2 q′1 ]′. The controlled inputs are the data rates

r2, r12 and r1. Thus, u = [ r′2 r′12 r′1 ]′, with u1 = (r′2, r
′
12)

′ and u2 = r1. And, the measured

outputs are the queue lengths q1 and q2, i.e. y = [ y′1 y′2 ]′ = [ q′2 q′1 ]′. Let a1 = a2 = 0.5

such that each of the nodes gets half of the available capacity w. Further, it is assumed that

w is typically step signal to be tracked.

The dynamics of the network is given by:

• Node 1: q1(k + 1) = q1(k) + r1(k)− r12(k)

• Sub-controller C1: r1 = f1(q1, r2 + vc11, r12 + vc12, q2 + vc2)

• Node 2: q2(k + 1) = q2(k) + r2(k) + r12(k)− w(k)

• Sub-controller C2: r2 = f2(q2); r12 = f12(q2)
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where f1, f2 and f12 are causal and linear operators. Clearly, plant G22 (the part of generalized

plant G : [t;u] 7→ [z; y] which maps u to y) and controller K in this case are lower triangular

operators as shown below:

G22 :=

 ∗ ∗ 0

∗ ∗ ∗



K :=


∗ 0

∗ 0

∗ ∗



The state-space description of G22 is given by:

 A B

C D

 =



A1 0 B1 0

0 A2 B21 B2

C1 0 0 0

0 C2 0 0


where A1 = A2 = 1, B1 = [ 1 1 ], B21 = [ 0 −1 ], B2 = 1, and C1 = C2 = 1.

The state-feedback matrix F , and observer gain matrix L for G22 are chosen such that

A + LC and A + BF are Hurwitz:

F =

 F1 0

0 F2

 , L =

 L1 0

0 L2


where F1 = [ −0.9 0 ]T , F2 = −0.9, L1 = L2 = −0.9.

Then, the right coprime factors of G22 are given by:

Xr =

 1+0.8λ
1−0.1λ 0

0 1+0.8λ
1−0.1λ

 ;Yr =


−0.81λ
1−0.1λ 0

0 0

0 −0.81λ
1−0.1λ

 ;

Xl =


−1−0.8λ
1−0.1λ

−0.9λ
1−0.1λ 0

0 −1 0

0 0.9λ
1−0.1λ

−1−0.8λ
1−0.1λ

 ;Yl =


0.81λ

1−0.1λ 0

0 0

0 0.81λ
1−0.1λ

 ;
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Mr =


1−λ

1−0.1λ
0.9λ

1−0.1λ 0

0 −1 0

0 −0.9λ
1−0.1λ

1−λ
1−0.1λ

 ;Nr =

 −λ
1−0.1λ

−λ
1−0.1λ 0

0 λ
1−0.1λ

−λ
1−0.1λ

 .

Ml =

 1−λ
1−0.1λ 0

0 1−λ
1−0.1λ

 ;Nl =

 λ
1−0.1λ

λ
1−0.1λ 0

0 −λ
1−0.1λ

−λ
1−0.1λ

 .

Thus, all right coprime factors are lower triangular, and noting that K = (Yr −MrQ)(Xr −

NrQ)−1 and Q = (KNr −Mr)−1(KXr − Yr), implies that Q is lower triangular iff K is lower

triangular.

This synthesis problem is converted into robust stability problem by formulating noise af-

fected channel as uncertain communication channel (multiplicative uncertainty) as shown in

Figure 6.2, which can be written in standard M −4 form. Thus, the problem of stabilization

and performance of the 2-node ABR system in the presence of sub-controller to sub-controller

noise becomes a robust stability problem. To further convert it into robust performance prob-

lem, add an uncertainty between the regulated variable z and exogenous input signal w (as

done in Figure 6.3). Thus, the problem can be written in standard M −4 form, where

M(K) =

 Φzw Φzv

Φrw Φrv

 .

Φzw is the 4× 1 closed-loop transfer matrix from w to z, Φzv is the 4× 3 closed-loop transfer

matrix from v = (v′c11 v′c12 v′c2)
′ to z, Φrw is the 3 × 1 closed-loop transfer function from w

to r = (u′1 y′1)
′ and Φrv is the 3 × 3 closed-loop transfer function from v to r. M(K) can

be written as affine function of Youla parameter Q, for Φzw and Φrw can be written as affine

functions of Q using coprime factors of G22 and Φzv is affine function of Q as established in

Chapter 3. Φrv is equal 0.

These four transfer functions can be written in terms of Youla parameter Q ( in H−U∗Q∗V
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Source 1

Source 2

C1
C2

q1 q2

r1 r12

r2

w

Figure 6.2 2-nodal ABR network with uncertain communication channel

form ) such that the design problem can be written as following optimization problem:

ν = inf
Q∈`1, lower triangular

inf
D∈D

‖DM2(Q)D−1‖`1 (6.1)

which can be solved using the technique given in (20) to obtain a global solution.
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Figure 6.3 M −4 form of 2-nodal ABR network

Writing dynamics equations of network in terms of λ transform:

 z

y

 =



−a1 1 0 0

−a2 0 0 1

−λ
1−λ

λ
1−λ

λ
1−λ 0

0 0 −λ
1−λ

λ
1−λ

−λ
1−λ

λ
1−λ

λ
1−λ 0

0 0 −λ
1−λ

λ
1−λ



 w

u


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=

 G11 G12

G21 G22


 w

u

 ≡ G

 w

u


u = Ky

⇒ Φzw = LFT(G, K) = H1 − U1 ∗Q ∗ V1 (6.2)

where, H1 = G11 + G12YrMlG21, U1 = G12Mr and V1 = MlG21. Using values of coprime

factors, H1, U1 and V1 can be obtained as:

H1 =



−0.5 +
0.81λ2

(1− 0.1λ)2

−0.5
λ(1− 0.8λ)
(1− 0.1λ)2

0


, U1 =



−(1− λ)
1− 0.1λ

0.9λ

1− 0.1λ
0

0
−0.9λ

1− 0.1λ

−(1− λ)
1− 0.1λ

−λ

1− 0.1λ

−λ

1− 0.1λ
0

0
λ

1− 0.1λ

−λ

1− 0.1λ


, V1 =

 −λ

1− 0.1λ

0

 .

Since, controller is implemented using left-coprime architecture of Chapter 3, the transfer

function Φzv can be written as

Φzv =



0 0

−M22X̃21 M22Ỹ21

0 0

−N22X̃21 N22Ỹ21


.

Since, coprime factors Xl and Yl are affine in Q, rewrite Φzv = H2 − U2 ∗Q ∗ V2 where

H2 =



0 0

−M22X̃
0
21 M22Ỹ

0
21

0 0

−N22X̃
0
21 N22Ỹ

0
21


, U2 =



0 0 0

0 0 M22

0 0 0

0 0 N22


and V2 =

 −Ñ11 M̃11

−Ñ21 M̃21



where X̃0
21 and Ỹ 0

21 are lower off-diagonal parts of Xl and Yl. By substituting for values of
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coprime factors, H2, U2 and V2 can be written as:

H2 =



0 0 0

0
0.9λ(1− λ)
(1− 0.1λ)2

0

0 0 0

0
0.9λ2

(1− 0.1λ)2


, U2 =



0 0 0

0 0
−(1− λ)
1− 0.1λ

0 0 0

0 0
−λ

1− 0.1λ


,

V2 =

 − λ

1− 0.1λ
− λ

1− 0.1λ

1− λ

1− 0.1λ

0
λ

1− 0.1λ
0


In order to obtain Q parameterization of Φrw, the dynamic equations of the network with

r = (r′2 r′12 q′2)
′ as regulated variable is written in terms of λ as following:

 r

y

 =



0 1 0 0

0 0 1 0

−λ
1−λ

λ
1−λ

λ
1−λ 0

−λ
1−λ

λ
1−λ

λ
1−λ 0

0 0 −λ
1−λ

λ
1−λ



 w

u

 (6.3)

≡


Ḡ11 Ḡ12

Ḡ21 Ḡ22


 w

u

 ≡ Ḡ

 w

u

 (6.4)

u = Ky (6.5)

⇒ Φzw = LFT(Ḡ, K) = H3 − U3 ∗Q ∗ V3 (6.6)

where, H3 = Ḡ11 + Ḡ12YrMlḠ21, U3 = Ḡ12Mr and V3 = MlḠ21. By substituting for values of

coprime factors, H3, U3 and V3 can be written as:

H3 =


0.81λ2

(1− 0.1λ)2

0
−λ(1 + 0.8λ)
(1− 0.1λ)2

 , U3 =


−(1− λ)
1− 0.1λ

0.9λ

1− 0.1λ
0

0 −1 0
−λ

1− 0.1λ

−λ

1− 0.1λ
0

 , V3 =

 −λ

1− 0.1λ

0

 .
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Thus, M transfer matrix can be written as an affine function of Q as follows:

M(K) =

 Φzw Φzv

Φrw Φrv

 =

 H1 − U1 ∗Q ∗ V1 H2 − U2 ∗Q ∗ V2

H3 − U3 ∗Q ∗ V3 0

 = M(Q).

Consider the following class for uncertainty description:

∆LTV = {∆ ∈ S is linear time varying and ‖∆‖i∞ < ∞},

where S characterizes the structure and subscript i∞ stands for the `∞ and the `2 induced

norm.

The optimal controller obtained by solving the robust synthesis problem in Equation (6.1)is:

Qopt(λ) =



−0.6−0.283λ−0.0689λ2+0.0217λ3+0.016λ4−0.002λ5

1+0.786λ+0.362λ2+0.085λ3+0.005λ4 0

0.198λ−0.156λ2−0.074λ3−0.018λ4−0.002λ5

1+0.786λ+0.362λ2+0.085λ3+0.005λ4 0

−0.001λ3−0.001λ4−0.001λ5

1+0.786λ+0.362λ2+0.085λ3+0.005λ4
0.9+0.706λ+0.325λ2+0.077λ3+0.004λ4

1+0.786λ+0.362λ2+0.085λ3+0.005λ4



The impulse response of Qopt is shown in Figure 6.4 , the lower triangular structure is

clearly visible.

The impulse response of closed-loop system from noise to regulated variable z with decen-

tralized lower triangular controller Qopt is shown in Figure 6.5. As expected there is no affect

on q2 and r2 while the controller stabilizes q1 and also maintains r1 close to 0.5w.
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6.2 Optimal Distributed Controller Design for 2-node ABR Network:

Search over two different architectures

In this example, consider a 2-node ABR network as shown in Figure 6.1. It will be shown

that the two architectures obtained in Chapter 3 will give different optimal controllers and

different values of performance measure. The objective is same as the one in previous example

i.e. to design a distributed controller for given ABR network which not only avoids the con-

gestion in the network while keeping the channel utilization ratio as large as possible, but also

minimizes the affect of the sub-controller to sub-controller noise on the queue lengths (q1 and

q2) and the regulated rates (r1, r12 and r2) of transmission of packets by regulating rates r1

and r2. It should also minimize the signal power of transmitted signal between sub-controllers.

Thus, it is required to find a stabilizing controller K which is lower triangular and mini-

mizes ‖T (K)‖, where T (K) :

 w

n

 7→

 z

t

 =

 Φzw Φzn

Φtw Φtn

, where Φzw captures the

performance requirement of system, Φzn captures the affect of sub-controller communication

noise on performance and Φtw denotes the power of transmitted signal with respect to power

of external input signals where n = v and t = n + v. From Chapter 3, T (K) = T (Q), where

Q is lower triangular and stable. This parametrization makes the closed-loop map Φzw affine

in Q, i.e. Φzw = H − U ∗Q ∗ V , where H = G11 + G12YrMlG21, U = G12M and V = MlG21.

Φtn = I, but Φzn and Φtw depend on sub-controllers C1b and C2a which in turn depend on the

architecture. Thus, the two performance optimization problems are:

I : µl = inf︷ ︸︸ ︷
K − stabilizing, lower traingular,

based on the first architecture

‖T (K)‖1

II : µr = inf︷ ︸︸ ︷
K − stabilizing, lower traingular,

based on the second architecture

‖T (K)‖1
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Solving above two optimization problems for these two architectures, two different optimal

controllers Qopt,l and Qopt,r are obtained as shown in Figure 6.6 - 6.7 with µl = 1.5 and µr =

3.7, respectively. Clearly, in this example it is better to use second architecture with µl = 1.5.
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Figure 6.4 Impulse response of structured optimum controller Qopt.
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Figure 6.5 Impulse response of closed-loop system from noise to regulated
variable z with decentralized lower triangular controller Qopt.
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Figure 6.6 Qopt,r optimal controller for first architecture with µr = 3.74
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Figure 6.7 Qopt,l optimal controller for second architecture with µl = 1.5



www.manaraa.com

58

PART II

DISTRIBUTED DECISION MAKING
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CHAPTER 7. DISTRIBUTED AVERAGING PROBLEM

Consider a system of N nodes or agents connected with each other in an arbitrary manner

via communication links. Each node is sensing its local information e.g. local temperature

or chemical concentration and is trying to compute the average of that local information

over the whole network. The system is modelled as a graph G := (V,E) consisting of a set

V := {1, 2, ..., N} of elements called vertices or nodes or agents, and a set E of node pairs called

edges, with E ⊆ Ec := {(i, j)|i, j ∈ V }. If E = Ec i.e. each node is connected to rest of n− 1

nodes, it is called a complete graph. A graph is called undirected if for every pair of distinct

nodes i and j both (i, j) and (j, i) are in E. Otherwise, it is called a directed graph or a digraph.

A simple graph is a graph with no self loops, i.e. (i, j) 6∈ E if i = j. A graph is connected if it

has a path between each pair of distinct nodes i and j, where by a path between nodes i and

j we mean a sequence of distinct edges of G of the form (i, k1), (k1, k2), . . . , (km, j) ∈ E. A

digraph is called “strongly connected” if there is a directed path between each pair of distinct

nodes. Diameter D of a graph is the longest shortest path between any two pair of nodes.

Fixed graphs are graphs in which the edge set E does not change with time. In this paper,

fixed graphs are considered.

Radius r of node pair (i, j) implies the minimum path length, i.e. the minimum number of

edges connecting i to j is equal to r. The neighborhood Ni of ith node is a set consisting of all

nodes within radius 1 not including the ith node itself. The degree or out-degree of an ith node

is |Ni|, where |Ni| denotes the number of elements in Ni. The maximum degree of the graph

is denoted by ∆ and the minimum degree of the graph is denoted by δ. The adjacency matrix

A = {aij} of a graph G is an N × N matrix. ai,j > 0 only if the node pair (i, j) ∈ E and

is equal to zero otherwise. The graph G is assumed to be simple, which implies that ai,i = 0
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for all i = 1, 2, · · ·N . The diagonal matrix Φ is an N ×N diagonal matrix with each diagonal

entry dii =
∑N

j=1 aij . For undirected graph the graph Laplacian matrix L is defined as Φ−A.

The graph Laplacian matrix L is an important function of the graph G. Eigenvalues of L

have direct relation to the connectivity of the graph. Let, λ1 ≤ λ2 ≤ · · ·λN be N eigenvalues

of L. Since L has row sum equal to zero (such matrices are called row stochastic), λ1 = 0 is

a trivial eigenvalue of L with 1̄ := [1, · · · , 1]T as the corresponding eigenvector i.e. L1̄ = 0.

A graph is connected if and only if the second smallest eigenvalue of Laplacian is non-zero

i.e. λ2 > 0 (26), and larger the λ2 better is the connectivity of the graph and faster is the

convergence of the distributed consensus protocol. The second smallest eigenvalue λ2 is also

called the algebraic connectivity of the graph. It is assumed that the communication among

nodes is noiseless.

7.1 Average consensus protocol

The state vector of node-values for average consensus protocol is defined by column vector

x(k) = (x1(k) x2(k) · · ·xN (k))T . The average consensus protocol denoted by AP distributively

computes the average of a given initial node-values x(0) = (x1(0) x2(0) · · ·xN (0))T . It takes

x(0) as an input and generates a sequence of node-values x(k)x(k) = (x1(k) x2(k) · · ·xN (k))T

such that {x(k)}∞k=1 = AP (x(0)) based on the following nearest-neighborhood update rule:

xi(k + 1) = xi(k) + ε
∑
j∈Ni

aij(xj(k)− xi(k)) for all i = 1, 2 · · ·N. (7.1)

This implies

x(k + 1) = Px(k) (7.2)

where P = I − εL. Since I − εL ≈ exp(−εL), discrete time average consensus can be seen as

the first order approximation of continuous time average consensus problem which is given by

ẋ = −εLx. It is known that P with 0 < ε < 1
dmax

, where dmax = max dii satisfies following

properties (32):

1. P is row-stochastic non-negative matrix with a trivial eigenvalue of 1,
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2. All eigenvalues of P are inside the unit circle,

3. If G is strongly connected then P is a primitive matrix,

4. If G is a balanced graph (1̄T L = 0) then P is column-stochastic (1̄T P = 1̄). Note that

every undirected graph is a balanced graph.

We will make following assumptions throughout the paper:

Assumption 7.1.1 (a) 0 < ε < 1
dmax

, (b) the graph G is connected, and (c) if the graph G is

directed graph, then it is “strongly connected” and balanced.

The average consensus protocol for the graph G given by (7.1) converges asymptotically

to average of the initial condition x(0) denoted by α := 1
N

∑N
i=1 xi(0) (32). The average

value α1̄ is an invariant quantity of the dynamics given by (7.1) i.e. P (α1̄) = α1̄. Further,

this convergence is reached exponentially with exponent bounded above by µ2, which is the

second largest eigenvalue of P (µ2 < 1). Following property of P which relies on the fact that

0 < ε < 1
dmax

is needed the rest of the development.

Proposition 7.1.1 Let pij be (i, j)th element of P . Then, 0 ≤ pij < 1 for all i, j = 1, 2 · · ·N .

Moreover, pii > 0 for all i.

Proof Since P is a non-negative matrix, it implies that pij ≥ 0. Since, 0 < ε < 1
dmax

,

0 < pii = 1 − εdii < 1; and for i 6= j, pij = εaij <
aij

dmax
≤ 1. Thus, pij < 1 for all

i, j = 1, 2 · · ·N with pii > 0 for all i. Also, for all j ∈ Ni, pij = εaij > 0.

The average protocol update rule can be rewritten as:

xi(k + 1) =
N∑

j=1

pijxj(k) (7.3)

at ith node. Thus, each updated node-value is a weighted average of its neighboring node-

values such that weights are non-negative and strictly less than one with
∑N

j=1 pij = 1 for all

i. This leads to the following conclusion:
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Proposition 7.1.2

xi(k + 1) ≤ max
j

xj(k) for all i = 1, 2 · · · , N ; (7.4)

xi(k + 1) ≥ min
j

xj(k) for all i = 1, 2 · · · , N. (7.5)

Equalities hold in above equations if and only if xi(k) = xj(k) for all i = 1, 2 · · · , N .

Proof For any node i:

xi(k + 1) =
N∑

j=1

pijxj(k)

≤
N∑

j=1

pij max
j

xj(k) = max
j

xj(k)
N∑

j=1

pij = max
j

xj(k).

Similarly, it can be shown that

xi(k + 1) ≥ min
j

xj(k) for all i = 1, 2 · · · , N.

Next, given that the equality holds in (7.4), suppose to the contrary that node-values are not

same at time k i.e. xi(k) 6= xj(k) for some pair of nodes (i, j). Then there exist a node m with

xm(k) < max
l

xl(k).

Thus,

xm(k + 1) =
N∑

j=1

pmjxj(k) < max
l

xl(k).

This contradicts the fact that equality holds in (7.4) for all i = 1, 2, · · ·N , implying that if

equality holds in (7.4) then xi(k) = xj(k) for all i, j = 1, 2 · · · , N . The other way is straight

forward. Similarly, equality condition can be proved for (7.5). Thus, equalities hold in (7.4)

and (7.5) if and only if xi(k) = xj(k) for all i = 1, 2 · · · , N .

By taking maximum over all nodes in (7.4) (and minimum over all nodes in (7.5)) it can

be shown that:

max x(k + 1) := max
j

xj(k + 1) ≤ max
j

xj(k) (7.6)

minx(k + 1) := min
j

xj(k + 1) ≥ min
j

xj(k) (7.7)
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where equalities hold in both cases if and only if xi(k) = xj(k) for all i, j = 1, 2 · · · , N .

Combining this with Proposition 7.1.2, it can be shown that node-value xi(k) at any time k is

bounded from above by the maximum value in network in the past and below by the minimum

value in the network in the past. This can be expressed as follows:

minx(k′) ≤ xi(k) ≤ max x(k′) for all i = 1, 2 · · · , N and for all k ≥ k′. (7.8)

The following lemma states that if a node reaches an average consensus protocol node-

value that is strictly less than the maximum over the network at some past time instant k′

then the node-value at that node at any future time instant k > k′ remains strictly less than

the maximum over the network at the past time instant k′.

Lemma 7.1.1 Consider a graph G (undirected or directed “strongly connected”, balanced

graph) running an average consensus protocol AP given by (7.1) with an initial condition

x(k′). Let, i and i′ be nodes such that xi(k) < max x(k′) and xi′(k) > minx(k′), respectively

for some time instant k ≥ k′. Then for all k′′ ≥ k:

xi(k′′) < max x(k′)

xi′(k′′) > minx(k′)

Proof It is given that for node i, xi(k) < max x(k′) for some time instant k ≥ k′. It follows

that:

xi(k + 1) =
∑

j

pijxj(k) = piixi(k) +
∑
j 6=i

pijxj(k)

≤ piixi(k) +
∑
j 6=i

pij max x(k) ≤ piixi(k) +
∑
j 6=i

pij max x(k′) [From Prop. 7.1.2]

= piixi(k)− pii max x(k′) +
∑

j

pij max x(k′) = piixi(k) + (1− pii) maxx(k′)

< pii max x(k′) + (1− pii) maxx(k′) [∵ pii > 0]

= max x(k′).

Thus, xi(k + 1) < max x(k′). It follows that xi(k + J) < max x(k′) for all J ≥ 1. Therefore,

if node i assumes a node-value xi(k) < max x(k′), then it remains strictly less than maxx(k′)
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for all future time instances. Similar proof holds for the minimum value case.

Next lemma shows that after D time steps the maximum value has to strictly decrease and

the minimum value has to strictly increase.

Lemma 7.1.2 Consider a graph G (undirected or directed “strongly connected”, balanced

graph) running an average consensus protocol AP given by (7.1) with an initial condition

x(k′) such that max x(k′) > minx(k′). Then for all k ≥ k′ + D:

max x(k) < max x(k′), and (7.9)

minx(k) > minx(k′). (7.10)

Proof Consider any particular node j. There exists a node i such that xi(k′) < max x(k′)

as minx(k′) < max x(k′). The shortest distance between node i and j, denoted by d, is

less than or equal to the diameter D of the graph. Let the path connecting i and j be

(i,m1), (m1,m2), . . . , (md−1, j). Because of weighted averaging, at time k = k′ + 1, xm1 will

become strictly less than maxx(k′) as shown below:

xm1(k
′ + 1) =

N∑
n=1

pm1nxn(k′) = pm1ixi(k′) +
∑
n6=i

pm1nxn(k′)

≤ pm1ixi(k′) +
∑
n6=i

pm1n max x(k′)

= pm1ixi(k′)− pm1i max x(k′) +
N∑

n=1

pm1n max x(k′)

= pm1ixi(k′) + (1− pm1i) maxx(k′)

< pm1i max x(k′) + (1− pii) maxx(k′) = maxx(k′).

Thus, xm1(k
′ + 1) < max x(k′). Therefore, from Lemma 7.1.1 for all k′′ ≥ k′ + 1, xm1(k

′′) <

max x(k′). It follows that for all k′′ ≥ k′ + 2, xm2(k
′′) < max x(k′) and that for all k′′ ≥

k′ + dij − 1, xj(k′′) < max x(k′). Note that k′ + D ≥ k′ + dij − 1 (D ≥ dij), therefore for all

k′′ ≥ k′ + D, xj(k′′) < max x(k′). As j is an arbitrary node, the above result given by (7.9)

follows. (7.10) can be derived in a similar manner.
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Thus from lemma 7.1.2, after a finite time given by the diameter D of the graph, all node-

values under averaging consensus protocol become strictly less than the maximum value in

network in the past and strictly greater than the minimum value in the network in the past,

which in turn means that after a finite time the maximum value in the network decreases and

the minimum value in the network increases.

7.2 Maximum consensus protocol

The maximum consensus protocol denoted by MXP distributively computes the maximum

of a given initial node-values z(0) = (z1(0)z2(0) · · · zN (0))T . It takes z(0) as an input and

generates a sequence of node-values z(k) i.e. {z(k)}∞k=1 = MXP (z(0)) based on the following

update rule:

zi(k + 1) = max
j∈Ni

zj(k), (7.11)

where zi(k) is the node-value of ith node for maximum consensus protocol. Each node updates

its value to the present maximum value in its neighborhood. The overall state vector for

maximum protocol is defined by the column vector z(k) = (z1(k)z2(k) · · · zN (k))T . Note that

zi(k) is a non-decreasing function with time k.

Proposition 7.2.1 Maximum consensus protocol MXP given by (7.11) converges to max z(0)

in finite time T ≤ D.

Proof Let m be a node with node-value at zm(0) = max z(0). Due to connectedness of

graph G, each node in graph is connected to node m. Let, D̃ be the maximum distance be-

tween m and any other node, then D̃ ≤ D. At time k = 1 all nodes connected to m at one

unit distance (one hop) will have the maximum value, at time k = 2 all nodes connected to

m at two unit distance (two hops) will have the maximum value, and so on. Thus, by time

T = D̃ all the nodes will have maximum value.



www.manaraa.com

66

7.3 Minimum consensus protocol

The minimum consensus protocol denoted by MNP distributively computes the minimum

of a given initial node-values y(0) = (y1(0)y2(0) · · · yN (0))T . It takes y(0) as an input and

generates a sequence of node-values y(k) i.e. {y(k)}∞k=1 = MXP (y(0)) based on the following

update rule:

yi(k + 1) = min
j∈Ni

yj(k), (7.12)

where yi(k) is the node-value of ith for minimum consensus protocol. Each node updates its

value to the present minimum value in its neighborhood. The overall state vector for minimum

protocol is defined by the column vector y(k) = (y1(k)y2(k) · · · yN (k))T . Further, yi(k) is a

non-increasing function with time k.

Proposition 7.3.1 Minimum consensus protocol given by (7.12) converges to max y(0) in

finite time T ≤ D.

Proof Similar to the proof of Proposition 7.2.1.
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CHAPTER 8. FINITE TIME CONVERGENCE WITHIN A GIVEN

ERROR MARGIN

Consider the graph G = (V,E) with N nodes as defined above, each node running a

distributed average consensus protocol AP given by (7.1). In this Chapter, a distributed

algorithm is provided which enables each node to detect the occurrence of the convergence in

the network within a given error margin in finite time. To achieve this each node runs two

more protocols, a maximum consensus protocol MXP and a minimum consensus protocol

MNP given by (7.11) and (7.12) , respectively with z(k0) = y(k0) = x(k0), where k0 is the

time when maximum and minimum protocols are started. By finite time convergence it is

implied that for any given ρ > 0, all agents can simultaneously reach to a decision in some

finite time Tc that their node-values are ρ close to the desired average value i.e. they are in

the interval [α − ρ, α + ρ]. From Proposition 7.1.2 and 7.2.1, after time k = k0 + D, z(k) =

max x(k0)1̄ and y(k) = minx(k0)1̄. Thus, at k = k0 + D the difference zi(k) − yi(k) will be

same at each node.

Define T (j) = (j− 1)D for j = 1, 2, · · · , as the set of time instants when MXP and MNP

are reset. This is done at k = T (j) by setting their initial conditions z(T (j)) and y(T (j)) equal

to the current node-values x(T (j)) from AP . Thus, at every time instant k = T (j + 1), MXP

running at each node with initial value z(T (j)) will output max z(T (j)) and MNP running at

each node with initial value y(T (j)) will output min y(T (j)). Define these outputs of MXP

and MNP as ᾱ(j) = max z(T (j)), α(j) = min y(T (j)), respectively and the difference between

these two outputs as β(j) = ᾱ(j)− α(j). At k = T (j + 1) each node will have the same value

β(j). Following corollary shows that ᾱ(j) and α(j) both converge to α, which in turn implies

that β(j) converges to 0.
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Lemma 8.0.1 The sequences ᾱ(j) and α(j) converge to α as j → ∞. Further, the sequence

β(j) converges to 0 as j →∞.

Proof From (32) it is given {x(k)}∞k=1 converges to α i.e.

lim
k→∞

xi(k) = α

for all i = 1, 2, · · ·N . Thus, for any ε > 0 there exists K such that for all k ≥ K implies:

|xi(k)− α| < ε for all i = 1, 2, · · ·N

⇒ −ε < xi(k)− α < ε for all i = 1, 2, · · ·N

⇒ −ε < max x(k)− α < ε

⇒ |max x(k)− α| < ε

⇒ lim
k→∞

max x(k) = α

Similarly, lim
k→∞

minx(k) = α

Now, ¯α(j) = max xi(jD) and α(j) = minxi(jD). So, they are subsequences of convergent

sequences converging to same limit α, thus both ᾱ(j) and α(j) converge to α as j̄ → ∞.

Further, note that β(j) = ᾱ(j)− α(j), therefore β(j) converges to 0 as j →∞.

This leads to the following distributed algorithm, which is the main result of the paper. It

helps each node in deducing the occurrence of convergence in the network in finite time within

desired error margin ρ.

Algorithm I:

Initialization: Given initial condition x(0), set z(0) = x(0) and y(0) = x(0). Start AP (x(0)),

MXP (z(0)) and MNP (y(0)). Set j = 1.

Step 1 : At k = T (j) + D, let ᾱ(j) = MXP (z(T (j))), α(j) = MNP (y(T (j))) and β(j) =

ᾱ(j)− α(j). Check at each node if β(j) < ρ; If yes then Stop, else set j = j + 1.

Step 2 : At k = T (j), set z(T (j)) = x(T (j)) and y(T (j)) = x(T (j)). Go to Step 1.

Next theorem with help of Lemma 8.0.1 shows that the Algorithm I terminates in finite

time.
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Theorem 8.0.1 Algorithm I terminates in some finite time Tc < ∞.

Proof β(j) converges to 0 as j → ∞ (from Lemma 8.0.1). Thus, for any given ρ > 0,

there exists an integer j0 such that β(j) < ρ for all j ≥ j0. This implies that the Algorithm I

converges in finite time Tc = T (j0).

The finite time Tc is not known beforehand because the size of β(j)’s which is proportional

to the algebraic connectivity of the graph is not known to each node beforehand. The significant

achievement is that all nodes can deduce in some finite time that the consensus in the network

has reached and this happens at the same time at each node without help of any centralized

information or source.

In above algorithm, the maximum and minimum protocols are getting reset after every D

time. The value of j at the termination of above algorithm gives number of times maximum

and minimum protocols are executed. This number can be reduced at the cost of delaying the

detection of convergence by choosing T (j) = (j−1)D+∆Tj where ∆Tj ≥ 0 for all j = 1, 2, · · · .

One heuristic way to choose ∆Tj is by estimating the rate of decrease in the difference between

maximum and minimum of node-values and setting ∆Tj equal to that estimated rate. In

fact, above algorithm should work for all the graphs with diameter bounded by Dmax at

the expense of delaying the detection of occurrence of convergence by time bounded by the

difference between Dmax and actual diameter D. In other words, for this scheme to work it

is not required for each node to know the actual diameter of the graph instead all it needs

is some upper bound value on the diameter. In (27) a distributed method for computing the

diameter of a graph is presented which uses a maximum of 2N2 messages. Each node can first

run this protocol to determine D in a distributed manner. Diameter D is the only parameter

of the network graph required by each node.

It should be noted that this scheme needs at most three times the amount of data to

be communicated between the nodes before the convergence is detected. Communication and

computation efforts can further be reduced by adjusting ∆Tj . After the convergence is detected,

each node can stop communicating any data to neighboring node (as long as its own node-value
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does not change from the steady-state value) and just listen for any new information from its

neighboring nodes.

Further, this detection of convergence technique can be generalized to distributed protocols

such that x(k) satisfies Lemma 7.1.2, i.e. the maximum and minimum of x(k) over all nodes

is strictly decreasing and increasing after every finite time D.
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CHAPTER 9. NUMERICAL EXAMPLES

In this Chapter, three scenarios of averaging protocol are presented to show how the al-

gorithm presented in the previous Chapter facilitates distributed detection of occurrence of

consensus in the network.

Scenario A is of an undirected graph G1 with 25 nodes. The diameter of graph is 4, and the

algebraic connectivity of the graph is 1.79. It has maximum degree of 12 and minimum degree

of 2. The initial condition x(0) is chosen from a uniform distribution between +10 and − 10.

The average value α = 0.95. Each node comes to know when the consensus has reached within

an error margin of ρ = 0.02. The simulation result shown in Figure 9.1 demonstrates that

after k = 45, each node correctly concludes that the convergence has occurred in the network

within an error margin of 0.02.

Scenario B is another undirected graph G2 with 25 nodes, diameter of the graph is 4, the

algebraic connectivity of the graph is 1.48. It has maximum degree of 11 and minimum degree

of 2. The average value α = −0.84. In this case, after consensus has reached and detected, there

is some change in one of node-values at k = 60, so that the new average value becomes −0.65.

The algorithm presented in previous Chapter starts automatically to find another occurrence

of convergence due to this change. The simulation result shown in Figure 9.2 demonstrates

that each node comes to know when the consensus has reached within an error margin of 0.02

at k = 85.

Scenario C is of a directed, strongly connected and balanced graph G3 with 25 nodes. The

diameter of graph is 11 , and the algebraic connectivity of the graph is 0.17. It has maximum

degree of 5 and minimum degree of 1. The initial condition x(0) is chosen from a uniform

distribution between +10 and − 10. The average value α = 1.07. The simulation result shown
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in Figure 9.3 demonstrates that each node comes to know when the consensus has reached

within an error margin of ρ = 0.02 at k = 96.
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APPENDIX A.

A.1 Example: Unstable closed-loop system with sub-controller

communication

Consider a generalized plant G with exogenous input w , control input u, measured output

y and regulated output z = y.

G =

 G11 G12

G21 G22

 =



−λ
1−λ

0

λ
1−λ

λ
1−λ 0

0 −λ
1−λ

λ
1−λ

−λ
1−λ

0

λ
1−λ

λ
1−λ 0

0 −λ
1−λ

λ
1−λ


y = G22u + G21w

u = Ky

The plant has triangular structure as shown in Figure 2.7. The stabilizing controller K (which

is also triangular i.e. K =

 K11 0

K21 K22

) is implemented distributively as shown in Figure 2.7

where t is the sub-controller transmission signal from K1 to K2. The controller is distributively

implemented such that K1 =

 K11

I

 and K2 =
[

K21 K22

]
. In this implementation,

t = K21y and Φtw = K21Φy1w.

The state space representation of G22 is given by:
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G22 =

 A B

C D

 =



1 0

0 1

1 1 0

0 −1 0

1 0

0 1

0 0 0

0 0 0



with F =


−0.8 0

−0.1 0

0 −0.9

 and L =

 −1.9 0

0 −1.9

 such that A+BF and A+LC are sta-

ble. Using this, G22 can be factorize in terms of its coprime factors Xr, Xl, Yr, Yl,Mr,Ml, Nr and Nl.

Xr =

 X11 X12

X21 X22

 =

 1+1.8λ
1−0.1λ 0

0.19λ2

(1−0.1λ)2
1+1.8λ
1−0.1λ

 , Yr =

 X11 X12

X21 X22

 =


−1.52λ
1−0.1λ 0

−0.19λ
1−0.1λ 0

−0.17λ2

(1−0.1λ)2
−1.71λ
1−0.1λ



Xl =

 X̃11 X̃12

X̃21 X̃22

 =


−1−1.7λ
1+0.9λ

−0.8λ
1+0.9λ 0

−0.1λ
1+0.9λ

−1−λ
1+0.9λ 0

0 0.9λ
1+0.9λ

−1−1.8λ
1+0.9λ

 , Yl =

 Ỹ11 Ỹ12

Ỹ21 Ỹ22

 =


1.52λ

1+0.9λ 0

1.9λ
1+0.9λ 0

0 1.71λ
1+0.9λ


Ml =

 M̃11 M̃12

M̃21 M̃22

 =

 1−λ
1+0.9λ 0

0 1−λ
1+0.9λ


All stabilizing K can be parameterized in terms of youla parameter Q. And, by setting

Q = 0 one such stabilizing controller can be obtained as K = YrX
−1
r . With this controller,

the closed-loop map Φzw = H − UQV = H = G11 + G12YrMlG21 can be written as

Φzw =

 Φz1w

Φz2w

 =

 Φy1w

Φy2w

 =

 −λ(1+1.8λ)
(1−0.1λ)(1+0.9λ)

−0.19λ3

(1−0.1λ)2(1+0.9λ)


Note that z = y i.e. z = (z′1, z

′
2)
′ = (y′1, y

′
2)
′ and Φy1w has only one unstable zero at z = −1.8.

Thus, the close loop map from w to z is stable. Next, it is shown that with this controller,

the distributed implementation is not internally stable by showing that the map Φtw from w
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to sub-controller transmission signal t is not stable.

Φtw = K21 ∗ Φy1w = X̃−1
22 [X̃22Y21 − Ỹ22X21]X−1

11 ∗ Φy1w

=
−λ2(0.17− 0.2λ)

(1− 0.1λ)(1 + 1.8λ)2
∗ −λ(1 + 1.8λ)

(1− 0.1λ)(1 + 0.9λ)
=

λ3(0.17− 0.2λ)
(1− 0.1λ)2(1 + 1.8λ)(1 + 0.9λ)

which is unstable, because K21 has two unstable poles at −1.8 while Φy1w has only one unstable

zero at z = −1.8.

A.2 Proof of Theorem 2.1.1

Theorem 2.1.1: Consider the G − K1 − K2 interconnection shown in Figure 2.1 where

G =

 G11 G12

G21 G22

 is the generalized plant. Let, K1 and K2 have stabilizable and detectable

state space realizations such that the induced realization of controller K is stabilizable and

detectable. Assuming that the interconnection with distributed implementation using K1 and K2

is well-posed. Given that the inherited realization of G22 from G is stabilizable and detectable,

G−K1−K2 interconnection shown in Figure 2.1 is internally stable if and only if G22−K1−K2

interconnection shown in Figure 2.2 is internally stable.

Proof Assuming that G−K1−K2 interconnection shown in Figure 2.1 is internally stable,

that is the map from (w′, v′1, v
′
2, v

′
3, v

′
4, v

′
5, v

′
6)
′ to (z′, u′1, u

′
2, y

′
1, y

′
2, t

′
1, t

′
2)
′ is stable, this implies

that the map from (v′1, v
′
2, v

′
3, v

′
4, v

′
5, v

′
6)
′ to (u′1, u

′
2, y

′
1, y

′
2, t

′
1, t

′
2)
′ is also stable. Thus, G22 −

K1 −K2 interconnection shown in Figure 2.2 is internally stable.

Now, assume that G22 −K1 −K2 interconnection shown in Figure 2.2 is internally stable.

Since, K1 and K2 have stabilizable and detectable state space realizations such that the in-

duced realization of controller K is stabilizable and detectable; and the inherited realization

of G22 is stabilizable and detectable, the closed-loop A−matrix of G22 −K interconnection is

Hurwitz. It can be shown that the closed-loop A−matrix of G −K1 −K2 interconnection is

same as that of G22 −K1 −K2 interconnection. Thus, G−K1 −K2 interconnection shown in

Figure 2.1 is internally stable.
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A.3 Proof of Theorem 2.1.2

Theorem 2.1.2: Consider the G22−K1−K2 interconnection given in Figure 2.2 where sub-

controllers K1 and K2 are distributed implementation of the centralized stabilizing controller

K. The G22−K1−K2 interconnection is internally stabilizing if any stabilizable and detectable

realization of K1 and K2 is such that the induced realization of K is stabilizable and detectable.

Proof Consider the G22−K1−K2 interconnection given in Figure 2.2 where sub-controllers

K1 and K2 are distributed implementation of the centralized stabilizing controller K. Let,

K1 and K2 have stabilizable and detectable state space realizations given by

 AC1 BC1

CC1 0


and

 AC2 BC2

CC2 0

, respectively. The interconnection with distributed implementation using

K1 and K2 is assumed to be well-posed. Let v = (v′3, v
′
4, v

′
1, v

′
6, v

′
2, v

′
5)
′ be set of all external

signals, r = (u′1, u
′
2, y

′
1, t

′
1, y

′
2, t

′
2)
′ be set of all internal signals as shown in Figure 2.1, and

H(G22,K1,K2) be the closed-loop map from v to r. Let, G22 have minimal realization given
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by

 A B2

C2 0

. Then,

G22 : x+ = Ax + B2

 u1

u2


 e3

e4

 = C2x

K1 : x+
1 = AC1x1 + BC1

 y1

t1


 e1

e6

 = CC1x1

K2 : x+
2 = AC2x2 + BC2

 y2

t2


 e2

e5

 = CC2x2

where x, x1 and x2 are states of G22,K1 and K2, respectively; and e1 = u1−v1, e2 = u2−v2, e3 =

y1 − v3, e4 = y2 − v4, e5 = t1 − v5 and e6 = t2 − v6.

Substituting this in above state space equations, the state space realization of map H̄ from
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r to v can be obtained as described below:

x+ = Ax + B2

 u1

u2


 v3

v4

 = −C2x +

 y1

y2


x+

1 = AC1x1 + BC1

 y1

t1


 v1

v6

 = −CC1x1 +

 u1

t2


x+

2 = AC2x2 + BC2

 y2

t2


 v2

v5

 = −CC2x2 +

 u2

t2



Thus, H̄ admits state space realization given by H̄

=



Ã︷ ︸︸ ︷
A 0 0

0 AC1 0

0 0 AC2

B̃︷ ︸︸ ︷
B2 0 0

0 BC1 0

0 0 BC2

−C2 0 0

0 −CC1 0

0 0 −CC2︸ ︷︷ ︸
C̃

0 J1 J3

J1 0 J2

J ′3 J2 0︸ ︷︷ ︸
D̃



,

where J1 =

 1 0

0 0

 , J2 =

 0 0

0 1

 and J3 =

 0 0

1 0

. Note that H = H̄−1, thus

H =

 Ã− B̃D̃−1C̃ −B̃D̃−1

D̃−1C̃ D̃−1

 =:

 Ā B̄

C̄ D̄

. It can be shown that Ā, B̄, C̄ and D̄ is a

stabilizable and detectable realization of H. Thus, the distributive implementation shown in
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K1

K2

t1

u1

K

t2

u2

y1

y2

Figure A.1 Distributed implementation of K

Figure 2.2 is internally stable (i.e. H is stable) if and only if Ā is Hurwitz.

Without loss of generality, let B2 =
[

B21 B22

]
, BC1 =

[
BC11 BC12

]
and BC2 =

[
BC21 BC22

]
. Similarly, let C2 =

 C21

C22

 , CC1 =

 CC11

CC12

 and CC2 =

 CC21

CC22

. Using

this we can rewrite Ā as:

Ā =


A B21CC11 B22CC21

BC11C21 AC1 BC12CC22

BC21C22 BC22CC12 AC2

 (A.1)

The induced realization of K as shown in Figure A.1 can be computed using the stabilizable

and detectable realizations of K1 and K2.

K1 : x+
1 = AC1x1 + BC1

 y1

t1


 u1

t2

 = CC1x1

K2 : x+
2 = AC2x2 + BC2

 y2

t2


 u2

t1

 = CC2x2
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By substituting t1 = CC22x1 and t2 = CC12x2 we get induced realization of K as described

below:

K : x+
k =

AK︷ ︸︸ ︷ AC1 BC12CC22

BC22CC12 AC2

 xk +

BK︷ ︸︸ ︷ BC11 0

0 BC21


 y1

y2


 u1

u2

 =

 CC11 0

0 CC21


︸ ︷︷ ︸

CK

xk

where xk = (x′1, x
′
2)
′. If induced realization of K is stabilizable and detectable and K is a

stabilizing controller i.e. the closed-loop map is stable, then A-matrix of G22 − K intercon-

nection, denoted by Acl, is Hurwitz. Acl can be written in terms of state space realization of

G22 and K as

Acl =

 A B2CK

BKC2 AK

 =


A B21CC11 B22CC21

BC11C21 AC1 BC12CC22

BC21C22 BC22CC12 AC2

 (A.2)

which is same as Ā, thus Ā is also Hurwitz, and the map H is stable.

A.4 Proof of Corollary 2.1.3

Corollary 2.1.3: Consider a 2-nest G22 − K interconnection where K is a centralized

stabilizing controller implemented in distributive manner using sub-controllers K1 and K2

as shown in Figure 2.2 with t2 = t and no transmission from K2 to K1. Let, K1 and K2

have state space realizations given by Let, K1 and K2 have state space realizations given by

K1 =


AC1 BC1

CC11

CC12

0

 and K2 =

 AC2 BC21 BC22

CC2 0

 such that (AC1, BC1, CC11)

and (AC2, BC21, CC2) are stabilizable and detectable. Then, the induced realization of con-
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troller K obtained from K1 and K2 is stabilizable and detectable and G22 −K interconnection

with distributed implementation is internally stable.

Proof Let, G22 have minimal realization given by

 A B2

C2 0

, where B2 =
[

B21 B22

]
,

C2 =

 C21

C22

. Then, the induced state-space realization of K is given by

K : x+
k =

AK︷ ︸︸ ︷ AC1 0

BC22CC12 AC2

 xk +

BK︷ ︸︸ ︷ BC1 0

0 BC21


 y1

y2


 u1

u2

 =

 CC11 0

0 CC2


︸ ︷︷ ︸

CK

xk.

Since, (AC1, BC1) and (AC2, BC21) are stabilizable pairs, the Popov-Belevitch-Hautus (PBH)

test (21) implies that
[

λI −AC1 BC1

]
and

[
λI −AC2 BC21

]
have full row rank. Note

that

[
−BC22CC12 λI −AC2 0 BC21

]
=

[
λI −AC2 BC21 BC22

]
0 I 0 0

−CC12 0 0 0

0 0 0 I


where CC12 has full row rank, this implies that

[
−BC22CC12 λI −AC2 0 BC21

]
has full

row rank. It can be shown that

 λI −AC1 0 BC1 0

−BC22CC12 λI −AC2 0 BC21

 has full row rank,

implying that (AK , BK) is stabilizable pair. Similarly, it can be shown that (AK , CK) is de-

tectable. Now, from Lemma 1 it implies that G22−K interconnection with distributed imple-

mentation is internally stable. In order to show that

 λI −AC1 0 BC1 0

−BC22CC12 λI −AC2 0 BC21


has full row rank, without loss of any generality, assume that AC1 and AC2 are in Jordan

Canonical form.
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The only way this matrix can loose rank is if for some λ any row of
[

λI −AC1 0 BC1 0

]
(:= P1) becomes similar to one of the rows of

[
−BC22CC12 λI −AC2 0 BC21

]
(:= P2).

• Let the row of P1 which corresponds to the last row of a Jordan block of AC1 be R1Jl,

then the part of R1Jl which corresponds to BC1 block is non-zero for (AC1, BC1) is

stabilizable, thus making R1Jl independent of any row of P2.

• Similarly, the rows of P2 corresponding to the last row of a Jordan blocks of AC2 are

linearly independent of any row of P1.

• Any row of P1 which does not correspond to the last row of a Jordan block is also

independent of any row of P2 which does not correspond to the last row of a Jordan

block of AC2, for the part of that row corresponding to λI −AC2 block is non-zero.

Thus, for all λ the rows of P1 and P2 are linearly independent, which implies that λI −AC1 0 BC1 0

−BC22CC12 λI −AC2 0 BC21

 has full row rank.

Remark : The example of unstable closed-loop map in presence of sub-controller commu-

nication presented in the Appendix A.1 does not satisfy the sufficiency condition of this

Corollary, thus nothing can be concluded from the Corollary and it is required to compute the

closed-loop maps to really check if they are stable or not.

A.5 Overall controller K as obtained from sub-controllers K1 and K2

Consider the system shown in Figure 3.1 where K is implemented distributively using two

sub-controllers K1 and K2 as given by (3.3) and (3.4). Ignore the sub-controller noise i.e.
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n1 = n2 = 0, thus s1 = t1 and s2 = t2.

t1 = C1
21y1 + C1

22s2 [From (3.3)]

= C1
21y1 + C1

22t2 [∵ n2 = 0]

t2 = C2
21y2 + C2

22s1 [From (3.4)]

= C2
21y2 + C2

22t1 [∵ n2 = 0]

= C2
21y2 + C2

22(C
1
21y1 + C1

22t2) [Substituting for t1 from above]

⇒ t2 = (I − C2
22C

1
22)

−1(C2
22C

1
21y1 + C2

21y2)

e1 = C1
11y1 + C1

12s2 = C1
11y1 + C1

12t2 [From (3.3) and n2 = 0]

= C1
11y1 + C1

12(I − C2
22C

1
22)

−1(C2
22C

1
21y1 + C2

21y2)

= [C1
11 + C1

12(I − C2
22C

1
22)

−1C2
22C

1
21]y1 + [C1

12(I − C2
22C

1
22)

−1C2
21]y2

= K11y1 + K12y2

Similarly,

e2 = C2
11y2 + C2

12s1 = C2
11y2 + C2

12t1 [From (3.4) and n1 = 0]

= [C2
12(I − C1

22C
2
22)

−1C1
21]y1 + [C2

11 + C2
12(I − C1

22C
2
22)

−1C1
22C

2
21]y2

= K21y1 + K22y2

Thus,

K11 = C1
11 + C1

12(I − C2
22C

1
22)

−1C2
22C

1
21

K12 = C1
12(I − C2

22C
1
22)

−1C2
21

K21 = C2
12(I − C1

22C
2
22)

−1C1
21

K22 = C2
11 + C2

12(I − C1
22C

2
22)

−1C1
22C

2
21

as given by (3.5) and (3.8).
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A.6 Obtaining Kn, Kt and Ktn from sub-controllers K1 and K2

Consider the same Figure 3.1 where K is implemented distributively using two sub-controllers

K1 and K2 as given by (3.3) and (3.4). Kn is the part which maps (n′1, n
′
2)

T to (e′1, e
′
2)

T , Kt

is the part which maps (y′1, y
′
2)

T to t = (t′1, t
′
2)

T and Ktn maps (n′1, n
′
2)

T to t. Thus, e1

e2

 = Kn

 n1

n2


 t1

t2

 = Ktn

 n1

n2


 t1

t2

 = Kt

 y1

y2


In order to find Kn and Ktn, set y = 0 in (3.3) and (3.4).

e1 = C1
12s2 = C1

12(t2 + n2)

t1 = C1
22(t2 + n2) = C1

22t2 + C1
22n2

t2 = C2
22(t1 + n1) = C2

22t1 + C2
22n1

= C2
22(C

1
22t2 + C1

22n2) + C2
22n1

⇒ t2 = (I − C2
22C

1
22)

−1(C2
22C

1
22n2 + C2

22n1)

⇒ e1 = C1
12(I − C2

22C
1
22)

−1(C2
22C

1
22n2 + C2

22n1) + C1
12n2

= [C1
12(I − C2

22C
1
22)

−1C2
22]n1 + [C1

12 + C1
12(I − C2

22C
1
22)

−1C2
22C

1
22]n2

= [C1
12(I − C2

22C
1
22)

−1C2
22]n1 + [C1

12(I − C2
22C

1
22)

−1]n2.

Similarly

e2 = [C2
12(I − C1

22C
2
22)

−1]n1 + [C2
12(I − C1

22C
2
22)

−1C1
22]n2.

⇒

 e1

e2

 =

 C1
12(1− C2

22C
1
22)

−1C2
22 C1

12(1− C2
22C

1
22)

−1

C2
12(1− C1

22C
2
22)

−1 C2
12(1− C1

22C
2
22)

−1C1
22


 n1

n2


:= Kn

 n1

n2


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From t2 = (I − C2
22C

1
22)

−1(C2
22C

1
22n2 + C2

22n1), t1 can be obtained in terms of n as follows:

t1 = C1
22t2 + C1

22n2

= C1
22((I − C2

22C
1
22)

−1(C2
22C

1
22n2 + C2

22n1)) + C1
22n2

= [C1
22(I − C2

22C
1
22)

−1C2
22]n1 + [C1

22 + C1
22(I − C2

22C
1
22)

−1C2
22C

1
22]n2

= [C1
22(I − C2

22C
1
22)

−1C2
22]n1 + [C1

22(I − C2
22C

1
22)

−1]n2

⇒

 t1

t2

 =

 (1− C1
22C

2
22)

−1C1
22C

2
22 (1− C1

22C
2
22)

−1C1
22

(1− C2
22C

1
22)

−1C2
22 (1− C2

22C
1
22)

−1C2
22C

1
22


 n1

n2


:= Ktn

 n1

n2


To compute Kt set n1 = n2 = 0 in (3.3) and (3.4).

t1 = C1
21y1 + C1

22s2

= C1
21y1 + C1

22t2

t2 = C2
21y2 + C2

22s1

= C2
21y2 + C2

22t1

= C2
21y2 + C2

22(C
1
21y1 + C1

22t2)

⇒ t2 = (I − C2
22C

1
22)

−1(C2
22C

1
21y1 + C2

21y2)

= [(I − C2
22C

1
22)

−1C2
22C

1
21]y1 + [(I − C2

22C
1
22)

−1C2
21]y2.

Similarly

t1 = [(I − C2
22C

1
22)

−1C1
21]y1 + [(I − C1

22C
2
22)

−1C1
22C

2
22]y2.

⇒

 t1

t2

 =

 (1− C2
22C

1
22)

−1C1
21 (1− C1

22C
2
22)

−1C1
22C

2
21

(1− C2
22C

1
22)

−1C2
22C

1
21 (1− C2

22C
1
22)

−1C2
21


 y1

y2


:= Kt

 y1

y2


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Further, Kn,Kt and Ktn can be written as product of two matrices as follows:

Kn =

 0 C1
12

C2
12 0


 I −C1

22

−C2
22 I


−1

(A.3)

Kt =

 I −C1
22

−C2
22 I


−1  C1

21 0

0 C2
21

 (A.4)

Ktn =

 0 C1
22

C2
22 0


 I −C1

22

−C2
22 I


−1

. (A.5)

Let, K0 :=

 C1
11 0

0 C2
11

 then overall controller K given by (3.5) and (3.8) can be written

in following form:

K = K0 +

 0 C1
12

C2
12 0


 I −C1

22

−C2
22 I


−1  C1

21 0

0 C2
21

 . (A.6)

(A.7)

A.7 Derivation of important closed-loop maps

Important closed-loop maps from sub-controller noise to internal variables of interconnec-

tion as given by equations (3.9)-(3.11) and (3.15) are derived here.

By setting v1 = v2 = v3 = v4 = 0 in the interconnection shown in Figure 3.1, the closed-loop

maps from noise n = (n′1, n
′
2)

T to internal variables u = (u′1, u
′
2)

T , y = (y′1, y
′
2)

T and t = (t′1, t
′
2)

T

are obtained as follows:

u = Ky + n = KG22u + Knn

⇒ u = (I −KG22)−1Knn

:= Φunn
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Similarly,

y = G22u = G22(I −KG22)−1Knn

:= Φynn

t = Kty + Ktnn = (KtG22(I −KG22)−1Kn)n + Ktnn

= (KtG22(I −KG22)−1Kn + Ktn)n

:= Φtnn

The closed-loop map from external signals to internal variables at the site of noise injection

can be obtained by setting n = 0. Then, t = Kty. The closed-loop map form external signals

v = (v′1, v
′
2, v

′
3, v

′
4)

T to y is standard map given by Φyv :=
[

(I −G22K)−1G22 (I −G22K)−1

]
.

Thus,

t = Kty = KtΦyvv

= Kt

[
(I −G22K)−1G22 (I −G22K)−1

]
v := Φtvv

A.8 Proof of Lemma 3.2.1

Lemma 3.2.1: The closed-loop map T (K1,K2) corresponding to Figure 2.1 interconnection

is affine in the Youla parameter Q if the maps Φun, Φtv and Φtn are affine in Q.

Proof : The closed-loop map T (K1,K2) consists of four maps viz. Φzw, Φzn, Φtw and Φtn

of which is Φzw is the standard map which is stable and affine in Q (18). Φtn is affine in Q

from the hypothesis.

From G−K1 −K2 interconnection, the regulated variable z is given by z = G11w + G12u.

In absence of any exogenous signal other than n, z = G12u. Thus, Φzn = G12Φun, which is

affine in Q if Φun is affine in Q for G12 does not depend on Q.

Further note that Kt is a map from y to t. Thus, Φtw = KtΦyw. From G − K1 − K2

interconnection, y is given by y = G21w + G22u = (I − G22K)−1G21w. This implies that

Φtw = Kt(I −G22K)−1G21 which is is affine in Q if Φtv is affine in Q for G21 does not depend

on Q.
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